Ademir Araujo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3933738/publications.pdf

Version: 2024-02-01

172457 182427 3,461 160 29 51 citations h-index g-index papers 161 161 161 3565 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere, 2003, 52, 799-804.	8.2	265
2	Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Frontiers in Environmental Science, 2017, 5, .	3.3	215
3	Management of urban solid waste: Vermicomposting a sustainable option. Resources, Conservation and Recycling, 2011, 55, 719-729.	10.8	171
4	Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma, 2012, 170, 227-231.	5.1	137
5	Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in PiauÃ-state, Brazil. European Journal of Soil Biology, 2008, 44, 225-230.	3.2	114
6	Plant bioassays to assess toxicity of textile sludge compost. Scientia Agricola, 2005, 62, 286-290.	1.2	105
7	Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biology and Biochemistry, 2013, 66, 175-181.	8.8	102
8	Landâ€Use Type Effects on Soil Organic Carbon and Microbial Properties in a Semiâ€arid Region of Northeast Brazil. Land Degradation and Development, 2016, 27, 171-178.	3.9	87
9	Soil Microbial Activity in Conventional and Organic Agricultural Systems. Sustainability, 2009, 1, 268-276.	3.2	79
10	Effect of different tannery sludge compost amendment rates on growth, biomass accumulation and yield responses of Capsicum plants. Waste Management, 2010, 30, 1976-1980.	7.4	70
11	Ten years of application of sewage sludge on tropical soil. A balance sheet on agricultural crops and environmental quality. Science of the Total Environment, 2018, 643, 1493-1501.	8.0	68
12	Tannery sludge compost amendment rates on soil microbial biomass of two different soils. European Journal of Soil Biology, 2011, 47, 146-151.	3.2	67
13	Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Reviews in Environmental Science and Biotechnology, 2016, 15, 677-696.	8.1	67
14	Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. Journal of Environmental Management, 2020, 255, 109914.	7.8	60
15	Protist species richness and soil microbiome complexity increase towards climax vegetation in the Brazilian Cerrado. Communications Biology, 2018, 1, 135.	4.4	58
16	Soil microbial biomass and activity under natural and regenerated forests and conventional sugarcane plantations in Brazil. Geoderma, 2012, 189-190, 257-261.	5.1	56
17	Impact of Land Degradation on Soil Microbial Biomass and Activity in Northeast Brazil. Pedosphere, 2012, 22, 88-95.	4.0	53
18	Microbiological process in agroforestry systems. A review. Agronomy for Sustainable Development, 2012, 32, 215-226.	5. 3	46

#	Article	lF	Citations
19	Effect of composted textile sludge on growth, nodulation and nitrogen fixation of soybean and cowpea. Bioresource Technology, 2007, 98, 1028-1032.	9.6	43
20	Soil organic carbon and biological indicators in an Acrisol under tillage systems and organic management in north-eastern Brazil. Soil Research, 2010, 48, 258.	1.1	41
21	Microbial biomass and activity in a Brazilian soil amended with untreated and composted textile sludge. Chemosphere, 2006, 64, 1043-1046.	8.2	40
22	Municipal solid waste compost amendment in agricultural soil: changes in soil microbial biomass. Reviews in Environmental Science and Biotechnology, 2010, 9, 41-49.	8.1	40
23	<i>Bacillus subtilis</i> ameliorates water stress tolerance in maize and common bean. Journal of Plant Interactions, 2019, 14, 432-439.	2.1	40
24	The effect of converting tropical native savanna to <i>Eucalyptus grandis</i> forest on soil microbial biomass. Land Degradation and Development, 2010, 21, 540-545.	3.9	39
25	Soil bacterial diversity in degraded and restored lands of Northeast Brazil. Antonie Van Leeuwenhoek, 2014, 106, 891-899.	1.7	39
26	Soil Surfaceâ€Active Fauna in Degraded and Restored Lands of Northeast Brazil. Land Degradation and Development, 2015, 26, 1-8.	3.9	35
27	Responses of soil bacterial community after seventh yearly applications of composted tannery sludge. Geoderma, 2018, 318, 1-8.	5.1	35
28	Soil Enzymatic Activity in <i>Eucalyptus Grandis</i> Plantations of Different Ages. Land Degradation and Development, 2016, 27, 77-82.	3.9	31
29	Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Applied Soil Ecology, 2019, 143, 26-34.	4.3	31
30	Response of soil bacterial communities to the application of the herbicides imazethapyr and flumyzin. European Journal of Soil Biology, 2021, 102, 103252.	3.2	31
31	Soil microbial properties after 5Âyears of consecutive amendment with composted tannery sludge. Environmental Monitoring and Assessment, 2015, 187, 4153.	2.7	30
32	Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado. Antonie Van Leeuwenhoek, 2017, 110, 457-469.	1.7	30
33	Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theoretical and Experimental Plant Physiology, 2020, 32, 99-108.	2.4	29
34	Sistemas agroflorestais e seus efeitos sobre os atributos quÃmicos em Argissolo Vermelho-Amarelo do Cerrado piauiense. Revista Brasileira De Engenharia Agricola E Ambiental, 2012, 16, 730-738.	1.1	26
35	Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Scientific Reports, 2020, 10, 7694.	3.3	26
36	The Impact of Pasture Systems on Soil Microbial Biomass and Communityâ€level Physiological Profiles. Land Degradation and Development, 2018, 29, 284-291.	3.9	23

#	Article	IF	CITATIONS
37	Grazing exclusion regulates bacterial community in highly degraded semiarid soils from the Brazilian <i>Caatinga</i> biome. Land Degradation and Development, 2021, 32, 2210-2225.	3.9	23
38	Avaliação de indicadores biológicos de qualidade do solo sob sistemas de cultivo convencional e orgânico de frutas. Ciencia E Agrotecnologia, 2008, 32, 353-359.	1.5	22
39	Historical and recent land use affects ecosystem functions in subtropical grasslands in Brazil. Ecosphere, 2017, 8, e02032.	2.2	22
40	Fungal diversity in soils across a gradient of preserved Brazilian Cerrado. Journal of Microbiology, 2017, 55, 273-279.	2.8	21
41	Nodule microbiome from cowpea and lima bean grown in composted tannery sludge-treated soil. Applied Soil Ecology, 2020, 151, 103542.	4.3	21
42	Changes in soil microbial biomass and activity in different Brazilian pastures. Spanish Journal of Agricultural Research, 2010, 8, 1253.	0.6	21
43	Diversity and structure of bacterial community in rhizosphere of lima bean. Applied Soil Ecology, 2020, 150, 103490.	4.3	20
44	Microbial co-occurrence network and its key microorganisms in soil with permanent application of composted tannery sludge. Science of the Total Environment, 2021, 789, 147945.	8.0	20
45	Long-term effect of composted tannery sludge on soil chemical and biological parameters. Environmental Science and Pollution Research, 2020, 27, 41885-41892.	5.3	19
46	Plant growth-promoting endophytic bacteria on maize and sorghum1. Pesquisa Agropecuaria Tropical, 0, 49, .	1.0	19
47	Soil microbial biomass in organic farming system. Ciencia Rural, 2010, 40, 2419-2426.	0.5	19
48	INFLUÊNCIA DE BACILLUS SUBTILIS NA ECLOSÃ f O, ORIENTAÃ \sharp Ã f O E INFECÃ \sharp Ã f O DE HETERODERA GLYCINES SOJA. Ciencia Rural, 2002, 32, 197-203.	EM _{.5}	18
49	Effect of paclobutrazol on microbial biomass, respiration and cellulose decomposition in soil. European Journal of Soil Biology, 2009, 45, 235-238.	3.2	18
50	Soil microbial biomass in an agroforestry system of Northeast Brazil. Tropical Grasslands - Forrajes Tropicales, 2015, 3, 41.	0.5	17
51	Archaea diversity in vegetation gradients from the Brazilian Cerrado. Brazilian Journal of Microbiology, 2018, 49, 522-528.	2.0	16
52	Chromium accumulation in maize and cowpea after successive applications of composted tannery sludge. Acta Scientiarum - Agronomy, 2018, 40, 35361.	0.6	16
53	Bacillus subtilis improves maize tolerance to salinity. Ciencia Rural, 2018, 48, .	0.5	16
54	Land degradation affects the microbial communities in the Brazilian Caatinga biome. Catena, 2022, 211, 105961.	5.0	16

#	Article	IF	CITATIONS
55	Less abundant bacterial groups are more affected than the most abundant groups in composted tannery sludge-treated soil. Scientific Reports, 2018, 8, 11755.	3.3	15
56	Dynamics of archaeal community in soil with application of composted tannery sludge. Scientific Reports, 2019, 9, 7347.	3.3	15
57	Bacillus subtilis changes the root architecture of soybean grown on nutrient-poor substrate. Rhizosphere, 2021, 18, 100348.	3.0	15
58	Heavy metals in cowpea (Vigna unguiculata L.) after tannery sludge compost amendment. Chilean Journal of Agricultural Research, 2013, 73, 282-287.	1.1	14
59	Soil Microbial Biomass After Three-Year Consecutive Composted Tannery Sludge Amendment. Pedosphere, 2014, 24, 469-475.	4.0	14
60	Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil. Ecotoxicology, 2017, 26, 1366-1377.	2.4	14
61	Biological Nitrogen Fixation: Importance, Associated Diversity, and Estimates. , 2013, , 267-289.		13
62	Soil organic matter pools in a tropical savanna under agroforestry system in Northeastern Brazil. Revista Arvore, 2014, 38, 711-723.	0.5	13
63	Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms. Environmental Science and Pollution Research, 2016, 23, 19193-19200.	5.3	13
64	Diversity of plant growth-promoting bacteria associated with sugarcane. Genetics and Molecular Research, 2017, 16 , .	0.2	13
65	Phytotoxicity and cytogenotoxicity of composted tannery sludge. Environmental Science and Pollution Research, 2020, 27, 34495-34502.	5.3	13
66	Sugarcane inoculated with endophytic diazotrophic bacteria: effects on yield, biological nitrogen fixation and industrial characteristics. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180990.	0.8	13
67	Fungos micorrÃzicos arbusculares como indicadores da recuperação de áreas degradadas no nordeste do Brasil. Revista Ciencia Agronomica, 2012, 43, 648-657.	0.3	13
68	Biomassa microbiana e estoques de C e N do solo em diferentes sistemas de manejo, no Cerrado do Estado do PiauÃ. Acta Scientiarum - Agronomy, 2009, 31, .	0.6	12
69	Genetic diversity among native isolates of rhizobia from Phaseolus lunatus. Annals of Microbiology, 2011, 61, 437-444.	2.6	12
70	Dynamics of bacterial and archaeal communities along the composting of tannery sludge. Environmental Science and Pollution Research, 2021, 28, 64295-64306.	5. 3	12
71	Utilização de nitrogênio pelo trigo cultivado em solo fertilizado com adubo verde (Crotalaria juncea) e/ou uréia. Ciencia Rural, 2005, 35, 284-289.	0.5	11
72	Inoculação e adubação nitrogenada sobre a nodulação e a produtividade de grãos de feijão-caupi. Ciencia Rural, 2008, 38, 2037-2041.	0.5	11

#	Article	IF	CITATIONS
73	INOCULAÇÃO E ADUBAÇÃO MINERAL EM FEIJÃO-CAUPI: EFEITOS NA NODULAÇÃO, CRESCIMENTO E PRODUTIVIDADE. Scientia Agraria, 2008, 9, 469.	0.5	11
74	Symbiotic performance, nitrogen flux and growth of lima bean (Phaseolus lunatus L.) varieties inoculated with different indigenous strains of rhizobia. Symbiosis, 2017, 73, 117-124.	2.3	11
75	Nodulation ability in different genotypes of Phaseolus lunatus by rhizobia from California agricultural soils. Symbiosis, 2017, 73, 7-14.	2.3	11
76	Changes in Soil Properties and Crop Yield as a Function of Early Desiccation of Pastures. Journal of Soil Science and Plant Nutrition, 2020, 20, 840-848.	3.4	11
77	Eficiência simbiótica de isolados de rizóbio noduladores de feijão-fava (Phaseolus lunatus L.). Revista Brasileira De Ciencia Do Solo, 2011, 35, 751-757.	1.3	11
78	Efeito da adição de lodo de curtume na fertilidade do solo, nodulação e rendimento de matéria seca do Caupi. Ciencia E Agrotecnologia, 2006, 30, 1071-1076.	1.5	10
79	Soil microbial biomass after two years of the consecutive application of composted tannery sludge - doi: 10.4025/actasciagron.v36i1.17160. Acta Scientiarum - Agronomy, 2014, 36, 35.	0.6	10
80	Caracterização e Divergência Genética de Populações de Casearia grandiflora no Cerrado Piauiense. Floresta E Ambiente, 2016, 23, 387-396.	0.4	10
81	Composto de lodo têxtil em plântulas de soja e trigo. Pesquisa Agropecuaria Brasileira, 2005, 40, 549-554.	0.9	10
82	Short communication. Growth and nodulation of cowpea after 5 years of consecutive composted tannery sludge amendment. Spanish Journal of Agricultural Research, 2014, 12, 1175.	0.6	10
83	Bacillus subtilis e adubação nitrogenada na produtividade do milho. Revista Brasileirade Ciencias Agrarias, 2011, 6, 657-66.	0.2	10
84	Sobrevivência e nodulação do Rhizobium tropici em sementes de feijão tratadas com fungicidas. Ciencia Rural, 2006, 36, 973-976.	0.5	9
85	Soil microbial properties in Eucalyptus grandis plantations of different ages. Journal of Soil Science and Plant Nutrition, 2014, , 0-0.	3.4	9
86	Heavy metals and yield of cowpea cultivated under composted tannery sludge amendment. Acta Scientiarum - Agronomy, 2014, 36, 443.	0.6	9
87	Edaphic fauna in a vegetation gradient in the Sete Cidades National Park. Brazilian Journal of Biology, 2019, 79, 45-51.	0.9	9
88	Polyphasic characterization of nitrogen-fixing and co-resident bacteria in nodules of Phaseolus lunatus inoculated with soils from PiauÃ-State, Northeast Brazil. Symbiosis, 2020, 80, 279-292.	2.3	9
89	Distinct taxonomic composition of soil bacterial community across a native gradient of Cerrado-Ecotone-Caatinga. Applied Soil Ecology, 2021, 161, 103874.	4.3	9
90	Plant growth-promoting bacteria improve growth and nitrogen metabolism in maize and sorghum. Theoretical and Experimental Plant Physiology, 2021, 33, 249-260.	2.4	9

#	Article	IF	CITATIONS
91	Cover crops shape the soil bacterial community in a tropical soil under no-till. Applied Soil Ecology, 2021, 168, 104166.	4.3	9
92	Estado nutricional e produção da pimenteira com uso de biofertilizantes lÃquidos. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 1241-1246.	1.1	9
93	Effect of Utilization of Organic Waste as Agricultural Amendment on Soil Microbial Biomass. Annual Research & Review in Biology, 2015, 7, 155-162.	0.4	9
94	Soil properties and cowpea yield after six years of consecutive amendment of composted tannery sludge. Acta Scientiarum - Agronomy, 2016, 38, 407.	0.6	8
95	Bradyrhizobium sp. inoculation ameliorates oxidative protection in cowpea subjected to long-term composted tannery sludge amendment. European Journal of Soil Biology, 2016, 76, 35-45.	3.2	8
96	Microbial biomass and organic matter in an oxisol under application of biochar. Bragantia, 2019, 78, 109-118.	1.3	8
97	Distinct bacterial community structure and composition along different cowpea producing ecoregions in Northeastern Brazil. Scientific Reports, 2021, 11, 831.	3.3	8
98	Growth, nodulation and nitrogen fixation of cowpea in soils amended with composted tannery sludge. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1865-1871.	1.3	8
99	Ontogenia da nodulação em duas cultivares de feijão-caupi. Ciencia Rural, 2007, 37, 561-564.	0.5	8
100	Coinoculação rizóbio e Bacillus subtilis em feijão-caupi e leucena: efeito sobre a nodulação, a fixação de N2 e o crescimento das plantas. Ciencia Rural, 2010, 40, 182-185.	0.5	7
101	Emergência e crescimento inicial de plântulas de pimenta ornamental e celosia em substrato à base de composto de lodo de curtume. Ciencia Rural, 2011, 41, 412-417.	0.5	7
102	Resposta do milho verde à inoculação com Azospirillum brasilense e nÃveis de nitrogênio. Ciencia Rural, 2014, 44, 1556-1560.	0.5	7
103	Plant growth-promoting rhizobacteria effect on maize growth and microbial biomass in a chromium-contaminated soil. Bragantia, 0, 80, .	1.3	7
104	Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga. Science of the Total Environment, 2022, 810, 151943.	8.0	7
105	Domestication of Lima Bean (Phaseolus lunatus) Changes the Microbial Communities in the Rhizosphere. Microbial Ecology, 2023, 85, 1423-1433.	2.8	7
106	Is the microwave irradiation a suitable method for measuring soil microbial biomass?. Reviews in Environmental Science and Biotechnology, 2010, 9, 317-321.	8.1	6
107	Nitrogen application and inoculation with Rhizobium tropici on common bean in the fall/winter. African Journal of Agricultural Research Vol Pp, 2014, 9, 3156-3163.	0.5	6
108	Chromium, Cadmium, Nickel, and Lead in a Tropical Soil after 3 Years of Consecutive Applications of Composted Tannery Sludge. Communications in Soil Science and Plant Analysis, 2014, 45, 1658-1666.	1.4	6

7

#	Article	IF	CITATIONS
109	CHROMIUM IN SOIL ORGANIC MATTER AND COWPEA AFTER FOUR CONSECUTIVE ANNUAL APPLICATIONS OF COMPOSTED TANNERY SLUDGE. Revista Brasileira De Ciencia Do Solo, 2015, 39, 297-302.	1.3	6
110	Two new begomoviruses that infect non-cultivated malvaceae in Brazil. Archives of Virology, 2017, 162, 1795-1797.	2.1	6
111	Complete genome sequence of a new bipartite begomovirus infecting Macroptilium lathyroides in Brazil. Archives of Virology, 2017, 162, 3551-3554.	2.1	6
112	Arbuscular mycorrhizal community in soil from different Brazilian Cerrado physiognomies. Rhizosphere, 2021, 19, 100375.	3.0	6
113	LEITURAS DE CLOROFILA E TEORES DE N EM FASES FENOLÓGICAS DO MILHO. Colloquium Agrariae, 2015, 11, 57-63.	0.2	6
114	Enzymatic Stoichiometry in Soils from Physiognomies of Brazilian Cerrado. Journal of Soil Science and Plant Nutrition, 2022, 22, 2735-2742.	3.4	6
115	Maize rhizosphere soil stimulates greater soil microbial biomass and enzyme activity leading to subsequent enhancement of cowpea growth. Environmental Sustainability, 2019, 2, 89-94.	2.8	5
116	Capability of plant growth-promoting bacteria in chromium-contaminated soil after application of composted tannery sludge. Annals of Microbiology, 2019, 69, 665-671.	2.6	5
117	Inoculation of rhizobia increases lima bean (Phaseolus lunatus) yield in soils from PiauÃ-and CearÃ _i states, Brazil. Revista Ceres, 2020, 67, 419-423.	0.4	5
118	Genetically related genotypes of cowpea present similar bacterial community in the rhizosphere. Scientific Reports, 2022, 12, 3472.	3.3	5
119	Genetic diversity and structure in natural populations of Cajui from Brazilian Cerrado. Bioscience Journal, 0, 37, e37080.	0.4	5
120	Environmental DNA Sequencing to Monitor Restoration Practices on Soil Bacterial and Archaeal Communities in Soils Under Desertification in the Brazilian Semiarid. Microbial Ecology, 2023, 85, 1072-1076.	2.8	5
121	Biomassa e atividade microbiana do solo sob pastagem em sistemas de monocultura e silvipastoril. Semina:Ciencias Agrarias, 2013, 34, 2727.	0.3	4
122	Soil microbial C:N:P ratio across physiognomies of Brazilian Cerrado Soil microbial biomass across a gradient of preserved native Cerrado. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20190049.	0.8	4
123	Nodulation, nitrogen uptake and growth of lima bean in a composted tannery sludge-treated soil. Ciencia Rural, 2019, 49, .	0.5	4
124	Cowpea nodules host a similar bacterial community regardless of soil properties. Applied Soil Ecology, 2022, 172, 104354.	4.3	4
125	Biofertilizers on soil microbial biomass and activity. Revista Brasileirade Ciencias Agrarias, 2014, 9, 545-549.	0.2	3
126	<i>HLAâ€B*15:04:04</i> , a novel HLA allele identified during proficiency testing in Brazil. Hla, 2016, 88, 200-201.	0.6	3

#	Article	IF	CITATIONS
127	Biological properties of disturbed and undisturbed Cerrado sensu stricto from Northeast Brazil. Brazilian Journal of Biology, 2017, 77, 16-21.	0.9	3
128	Chemical variables influencing microbial properties in composted tannery sludge-treated soil. International Journal of Environmental Science and Technology, 2018, 15, 1793-1800.	3.5	3
129	Structure and diversity of bacterial community in semiarid soils cultivated with prickly-pear cactus (Opuntia ficus-indica (L.) Mill.). Anais Da Academia Brasileira De Ciencias, 2021, 93, e20190183.	0.8	3
130	Characterization of edaphic fauna in different monocultures in Savanna of Piau \tilde{A} - Brazilian Journal of Biology, 2021, 81, 657-664.	0.9	3
131	Diversity of native rhizobia-nodulating <italic>Phaseolus lunatus</italic> in Brazil. Legume Research, 2015, 38, .	0.1	3
132	Short Communication: Soil carbon pools in different pasture systems. Spanish Journal of Agricultural Research, 2016, 14, e11SC01.	0.6	3
133	Bacillus subtilis rhizobacteria ameliorate heat stress in the common bean. Rhizosphere, 2022, 21, 100472.	3.0	3
134	T-RFLP analysis of soil bacterial structure from Cerrado within the Sete Cidades National Park, Brazil. Neotropical Biodiversity, 2016, 2, 163-170.	0.5	2
135	Soil Microbial Biomass Across a Gradient of Preserved Native Cerrado. Floresta E Ambiente, 2018, 25, .	0.4	2
136	Seed size influences the promoting activity of rhizobia on plant growth, nodulation and N fixation in lima bean. Ciencia Rural, $2021, 51, \ldots$	0.5	2
137	Diversity, structure, and composition of plant growth-promoting bacteria in soil from Brazilian Cerrado. Rhizosphere, 2021, 20, 100435.	3.0	2
138	Penetration resistance and density of a yellow oxissol under conventional management at different ages. Bioscience Journal, 2016, 32, 115-122.	0.4	2
139	Efeito residual de lodo de curtume compostado sobre os teores de cromo e produtividade do milho verde. CientÃfica, 2015, 43, 37.	0.2	2
140	Soil microbial biomass and enzyme activity in six Brazilian oxisols under cropland and native vegetation. Bragantia, 2020, 79, 623-629.	1.3	2
141	Organic residue inputs influence soil biological properties in organic farming systems. Revista Brasileirade Ciencias Agrarias, 2018, 13, 1-5.	0.2	2
142	Rhizobacteria and arbuscular mycorrhizal fungus presented distinct and specific effects on soybean growth when inoculated with organic compost. Rhizosphere, 2022, 22, 100513.	3.0	2
143	Doses de paclobutrazol sobre a biomassa microbiana do solo. Semina:Ciencias Agrarias, 2011, 31, 1349.	0.3	1
144	Chloroplast diversity of Casearia grandiflora in the Cerrado of Piau $ ilde{A}$ -State. Genetics and Molecular Research, 2017, 16, .	0.2	1

#	Article	IF	CITATIONS
145	Responses of microbial biomass, available phosphorus, and sugarcane yield after filter cake amendment in a tropical soil. Australian Journal of Crop Science, 2018, 12, 552-556.	0.3	1
146	Changes on microbial C and enzyme activities in soil with amendment of composted tannery sludge after 9Âyears. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 501-505.	2.0	1
147	Chemical and microbiological indicators of quality in a yellow oxissol under conventional tillage of different ages. Bioscience Journal, 0, , 601-609.	0.4	1
148	Caracterização de rizobios noduladores de feijão-fava (Phaseolus lunatusL.) em solos de três estados do nordeste brasileiro. Colloquium Agrariae, 2019, 15, 11-20.	0.2	1
149	Resposta do milho verde à inoculação com Azospirillum brasilense e nÃveis de nitrogênio. Ciencia Rural, 2014, 44, 1556-1560.	0.5	1
150	Microbiological attributes of yellow oxissol under different monocultures in the savanna region of PiauÃ-state. Bioscience Journal, 0, , 1210-1218.	0.4	1
151	Conditioning and coating of Urochloa brizantha seeds associated with inoculation of Bacillus subtilis1. Pesquisa Agropecuaria Tropical, 0, 49, .	1.0	1
152	Assessment of the phenotypic diversity in natural populations of Annona coriacea Mart.: implications for breeding. Genetic Resources and Crop Evolution, 0 , 1 .	1.6	1
153	Ecosystem functions in different physiognomies of Cerrado through the Rapid Ecosystem Function Assessment (REFA). Anais Da Academia Brasileira De Ciencias, 2022, 94, e20200457.	0.8	1
154	Isolation and Characterization of Plant Growth-Promotion Diazotrophic Endophytic Bacteria Associated to Sugarcane (Saccharum officinarum L.) Grown in ParaAba, Brazil. Brazilian Archives of Biology and Technology, 0, 65, .	0.5	1
155	Rhizobial Diversity for Tropical Pulses and Forage and Tree Legumes in Brazil. , 2017, , 135-151.		0
156	Inoculation of arbuscular mycorrhizal fungi as a strategy to improve annatto (Bixa orellana L.) growth. Acta Scientiarum - Biological Sciences, 0, 43, e54742.	0.3	0
157	Crescimento e fitoextração em espécies em espécies florestais após adição de lodo de curtume no substrato. Scientia Forestalis/Forest Sciences, 2016, 44, .	0.2	0
158	SOIL RESPIRATION AND BULK DENSITY UNDERORGANIC AND CONVENTIONALFARMINGSYSTEMS. Colloquium Agrariae, 2018, 14, 167-171.	0.2	0
159	Dataset for effects of the transition from dry forest to pasture on diversity and structure of bacterial communities in Northeastern Brazil. Data in Brief, 2022, 41, 107842.	1.0	0
160	Plant growth-promoting bacteria increase the yield of green maize and sweet sorghum. Journal of Plant Nutrition, 0 , 1 -11.	1.9	0