Wanzhu Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3932313/publications.pdf

Version: 2024-02-01

		687363	839539	
18	747	13	18	
papers	citations	h-index	g-index	
10	1.0	1.0	1427	
18	18	18	1437	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Donor–Acceptor Type Polymer Bearing Carbazole Side Chain for Efficient Dopantâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102697.	19.5	51
2	Environmentally Responsive Intelligent Dynamic Water Collector. ACS Applied Materials & Company (1997) Among the Interfaces, 2022, 14, 2202-2210.	8.0	4
3	Solvent-Vapor-Annealing-Induced Interfacial Self-Assembly for Simplified One-Step Spraying Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 7316-7326.	5.1	5
4	Effect of anode interfacial modification on the performance of laminated flexible ITOâ€free organic solar cells. Energy Science and Engineering, 2021, 9, 502-508.	4.0	3
5	Dedoping-induced interfacial instability of poly(ethylene imine)s-treated PEDOT:PSS as a low-work-function electrode. Journal of Materials Chemistry C, 2020, 8, 328-336.	5.5	19
6	Flexible ITO-free sky-blue polymer light-emitting diodes and printed polymer solar cells based on AgNW/PI transparent conductive electrode. Flexible and Printed Electronics, 2020, 5, 014003.	2.7	11
7	Manipulate Micrometer Surface and Nanometer Bulk Phase Separation Structures in the Active Layer of Organic Solar Cells via Synergy of Ultrasonic and High-Pressure Gas Spraying. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10777-10784.	8.0	17
8	DNA Based Hybrid Material for Interface Engineering in Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9579-9586.	8.0	19
9	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	21.0	172
10	Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency. Nano Energy, 2018, 46, 428-435.	16.0	45
11	Asymmetric photocurrent extraction in semitransparent laminated flexible organic solar cells. Npj Flexible Electronics, 2018, 2, .	10.7	53
12	The contraction of PEDOT films formed on a macromolecular liquid-like surface. Journal of Materials Chemistry C, 2018, 6, 654-660.	5.5	19
13	Roll-to-Roll Slot-Die-Printed Polymer Solar Cells by Self-Assembly. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22485-22494.	8.0	27
14	Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 12574-12581.	10.3	65
15	Macroscopic Domains within an Oriented TQ1 Film Visualized Using 2D Polarization Imaging. ACS Omega, 2017, 2, 32-40.	3.5	11
16	A Highly Crystalline Wide-Band-Gap Conjugated Polymer toward High-Performance As-Cast Nonfullerene Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36061-36069.	8.0	34
17	Self-doped conjugated polyelectrolyte with tuneable work function for effective hole transport in polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 15670-15675.	10.3	34
18	Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy and Environmental Science, 2013, 6, 3022.	30.8	158