Irina Artemieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3931264/publications.pdf

Version: 2024-02-01

172457 123424 4,070 73 29 61 citations h-index g-index papers 103 103 103 2780 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antarctica ice sheet basal melting enhanced by high mantle heat. Earth-Science Reviews, 2022, 226, 103954.	9.1	5
2	Incipient ocean spreading beneath the Arabian shield. Earth-Science Reviews, 2022, 226, 103955.	9.1	7
3	Trans-European Suture Zone. Encyclopedia of Earth Sciences Series, 2021, , 1819-1827.	0.1	O
4	No mafic layer in 80 km thick Tibetan crust. Nature Communications, 2021, 12, 1069.	12.8	19
5	ScanArray—A Broadband Seismological Experiment in the Baltic Shield. Seismological Research Letters, 2021, 92, 2811-2823.	1.9	9
6	Long-lived Paleoproterozoic eclogitic lower crust. Nature Communications, 2021, 12, 6553.	12.8	5
7	A new tectonic map of the Iranian plateau based on aeromagnetic identification of magmatic arcs and ophiolite belts. Tectonophysics, 2020, 792, 228588.	2.2	7
8	Lithosphere Mantle Density of the North China Craton. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020296.	3.4	16
9	Continent size revisited: Geophysical evidence for West Antarctica as a back-arc system. Earth-Science Reviews, 2020, 202, 103106.	9.1	9
10	Trans-European Suture Zone. Encyclopedia of Earth Sciences Series, 2020, , 1-11.	0.1	0
11	Thermochemical Heterogeneity and Density of Continental and Oceanic Upper Mantle in the Europeanâ€North Atlantic Region. Journal of Geophysical Research: Solid Earth, 2019, 124, 9280-9312.	3.4	13
12	Thetys subduction and continental collision imaged by magnetic and gravity modelling. Acta Geologica Sinica, 2019, 93, 61-62.	1.4	1
13	Making and altering the crust: A global perspective on crustal structure and evolution. Earth and Planetary Science Letters, 2019, 512, 8-16.	4.4	21
14	Crustal density structure of the northwestern Iranian Plateau. Canadian Journal of Earth Sciences, 2019, 56, 1347-1365.	1.3	13
15	Southern Africa crustal anisotropy reveals coupled crust-mantle evolution for over 2 billion years. Nature Communications, 2019, 10, 5445.	12.8	8
16	Geodynamics of Anatolia: Lithosphere Thermal Structure and Thickness. Tectonics, 2019, 38, 4465-4487.	2.8	26
17	Lithosphere structure in Europe from thermal isostasy. Earth-Science Reviews, 2019, 188, 454-468.	9.1	43
18	Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method. Earth-Science Reviews, 2019, 188, 469-481.	9.1	24

#	Article	IF	CITATIONS
19	Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth and Planetary Science Letters, 2019, 505, 13-19.	4.4	20
20	Crustal structure of the Mendeleev Rise and the Chukchi Plateau (Arctic Ocean) along the Russian wide-angle and multichannel seismic reflection experiment "Arctic-2012― Journal of Geodynamics, 2018, 119, 107-122.	1.6	26
21	Control on off-rift magmatism: A case study of the Baikal Rift Zone. Earth and Planetary Science Letters, 2018, 482, 501-509.	4.4	15
22	DOBRE-2 WARR profile: the Earth's upper crust across Crimea between the Azov Massif and the northeastern Black Sea. Geological Society Special Publication, 2017, 428, 199-220.	1.3	13
23	Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis. Journal of Geophysical Research: Solid Earth, 2017, 122, 5181-5207.	3.4	35
24	Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017. Earth-Science Reviews, 2017, 172, 1-26.	9.1	77
25	Density structure of the cratonic mantle in Southern Africa: 2. Correlations with kimberlite distribution, seismic velocities, and Moho sharpness. Gondwana Research, 2016, 36, 14-27.	6.0	11
26	Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data. Geophysical Journal International, 2016, 204, 687-696.	2.4	29
27	Density structure of the cratonic mantle in southern Africa: 1. Implications for dynamic topography. Gondwana Research, 2016, 39, 204-216.	6.0	22
28	Crustal structure and tectonic model of the Arctic region. Earth-Science Reviews, 2016, 154, 29-71.	9.1	97
29	Geophysical constraints on geodynamic processes at convergent margins: A global perspective. Gondwana Research, 2016, 33, 4-23.	6.0	9
30	Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE-5 profile across the north western Black Sea and the Crimean Peninsula. Geophysical Journal International, 2015, 201, 406-428.	2.4	39
31	Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?. Precambrian Research, 2015, 259, 34-42.	2.7	10
32	Upper mantle structure beneath southern African cratons from seismic finite-frequency P- and S-body wave tomography. Earth and Planetary Science Letters, 2015, 420, 174-186.	4.4	34
33	Density heterogeneity of the cratonic lithosphere: A case study of the Siberian Craton. Gondwana Research, 2015, 28, 1344-1360.	6.0	32
34	What Lies Deep in the Mantle Below?. Eos, 2015, 96, .	0.1	8
35	Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 2013, 608, 1049-1072.	2.2	51
36	Moho depth and crustal composition in Southern Africa. Tectonophysics, 2013, 609, 267-287.	2.2	77

3

#	Article	IF	CITATIONS
37	Moho and magmatic underplating in continental lithosphere. Tectonophysics, 2013, 609, 605-619.	2.2	303
38	Moho:. Tectonophysics, 2013, 609, 1-8.	2.2	17
39	EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region. Tectonophysics, 2013, 609, 97-153.	2.2	132
40	Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data. Tectonophysics, 2013, 609, 154-183.	2.2	98
41	The deep structure of the Scandes and its relation to tectonic history and present-day topography. Tectonophysics, 2013, 602, 15-37.	2.2	54
42	100 years of seismic research on the Moho. Tectonophysics, 2013, 609, 9-44.	2.2	40
43	Caveats on tomographic images. Terra Nova, 2013, 25, 259-281.	2.1	94
44	A lithospheric perspective on structure and evolution of Precambrian cratons., 2012,, 94-111.		1
45	Crustal thickness controlled by plate tectonics: A review of crust–mantle interaction processes illustrated by European examples. Tectonophysics, 2012, 530-531, 18-49.	2.2	53
46	Flexure and rheology. , 2011, , 505-606.		1
46		1.3	2
	Flexure and rheology. , 2011, , 505-606. Samovar: a thermomechanical code for modeling of geodynamic processes in the	1.3	
47	Flexure and rheology. , 2011, , 505-606. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere—application to basin evolution. Arabian Journal of Geosciences, 2010, 3, 477-497.		2
47	Flexure and rheology., 2011, , 505-606. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphere—application to basin evolution. Arabian Journal of Geosciences, 2010, 3, 477-497. The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos, 2009, 109, 23-46. Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited.	1.4	2 253
47 48 49	Flexure and rheology., 2011,, 505-606. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphereâ€"application to basin evolution. Arabian Journal of Geosciences, 2010, 3, 477-497. The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos, 2009, 109, 23-46. Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited. Tectonophysics, 2009, 474, 78-105. Deep Norden: Highlights of the lithospheric structure of Northern Europe, Iceland, and Greenland.	1.4 2.2	2 253 129
47 48 49 50	Flexure and rheology., 2011, , 505-606. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphereâ€"application to basin evolution. Arabian Journal of Geosciences, 2010, 3, 477-497. The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos, 2009, 109, 23-46. Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited. Tectonophysics, 2009, 474, 78-105. Deep Norden: Highlights of the lithospheric structure of Northern Europe, Iceland, and Greenland. Episodes, 2008, 31, 98-106. TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes. Global and Planetary Change,	1.4 2.2 1.2	2 253 129 34
47 48 49 50	Flexure and rheology., 2011, , 505-606. Samovar: a thermomechanical code for modeling of geodynamic processes in the lithosphereâ€"application to basin evolution. Arabian Journal of Geosciences, 2010, 3, 477-497. The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos, 2009, 109, 23-46. Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited. Tectonophysics, 2009, 474, 78-105. Deep Norden: Highlights of the lithospheric structure of Northern Europe, Iceland, and Greenland. Episodes, 2008, 31, 98-106. TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 2007, 58, 1-118.	1.4 2.2 1.2 3.5	2 253 129 34 137

#	Article	IF	CITATIONS
55	Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle. Geophysical Journal International, 2004, 157, 607-628.	2.4	79
56	Density of the continental roots: compositional and thermal contributions. Earth and Planetary Science Letters, 2003, 209, 53-69.	4.4	161
57	Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform. Earth and Planetary Science Letters, 2003, 213, 431-446.	4.4	83
58	On the relations between cratonic lithosphere thickness, plate motions, and basal drag. Tectonophysics, 2002, 358, 211-231.	2.2	82
59	Processes of lithosphere evolution: new evidence on the structure of the continental crust and uppermost mantle. Tectonophysics, 2002, 358, 1-15.	2.2	16
60	Seismic anisotropy and mantle creep in young orogens. Geophysical Journal International, 2002, 149, 1-14.	2.4	91
61	Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research, 2001, 106, 16387-16414.	3.3	729
62	14. In Situ Transport and Seismic Properties of Reservoir and Hot Dry Rocks. , 2001, , 217-238.		O
63	The dependence of transport properties ofin situ rocks on pore fluid composition and temperature. Surveys in Geophysics, 1996, 17, 289-306.	4.6	4
64	Thermal characteristics of anisotropic media with inclusions. Geophysical Journal International, 1991, 107, 557-562.	2.4	5
65	Electrical structure of the lithosphere. , 0, , 425-504.		0
66	Age of the lithosphere. , 0, , 15-46.		0
67	Evolution of the lithosphere. , 0, , 607-669.		O
68	Thermal regime of the lithosphere from heat flow data. , 0, , 220-316.		0
69	CBL and lithospheric density from petrologic and geophysical data. , 0, , 374-424.		O
70	Thermal state of the lithosphere from non-thermal data., 0,, 317-373.		0
71	Summary of lithospheric properties. , 0, , 670-677.		0
72	What is the lithosphere?. , 0, , 1-14.		1

ARTICLE IF CITATIONS
73 Seismic structure of the lithosphere. , 0, , 47-219. 0