List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3931200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications, 2016, 7, 11981.	12.8	808
2	Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces The Journal of Physical Chemistry, 1994, 98, 8468-8480.	2.9	636
3	Direct measurements of the force between hydrophobic surfaces in water. Advances in Colloid and Interface Science, 2001, 91, 391-436.	14.7	379
4	Interactions between water—stable hydrophobic Langmuir—Blodgett monolayers on mica. Journal of Colloid and Interface Science, 1986, 114, 234-242.	9.4	266
5	pH-dependent interactions between adsorbed chitosan layers. Langmuir, 1992, 8, 1406-1412.	3.5	254
6	Protein interactions at solid surfaces. Advances in Colloid and Interface Science, 1995, 57, 161-227.	14.7	207
7	Polyelectrolyte-mediated surface interactions. Advances in Colloid and Interface Science, 2005, 114-115, 173-187.	14.7	174
8	Surface Force Studies of Langmuir–Blodgett Cellulose Films. Journal of Colloid and Interface Science, 1997, 186, 369-381.	9.4	158
9	Probing Protein Adsorption onto Mercaptoundecanoic Acid Stabilized Gold Nanoparticles and Surfaces by Quartz Crystal Microbalance and ζ-Potential Measurements. Langmuir, 2007, 23, 6053-6062.	3.5	155
10	A Quartz Crystal Microbalance Study of the Adsorption of Asphaltenes and Resins onto a Hydrophilic Surface. Journal of Colloid and Interface Science, 2002, 247, 342-350.	9.4	143
11	Hydration State of Nonionic Surfactant Monolayers at the Liquid/Vapor Interface:Â Structure Determination by Vibrational Sum Frequency Spectroscopy. Journal of the American Chemical Society, 2005, 127, 16848-16859.	13.7	131
12	Effect of Polyelectrolyte Charge Density on the Adsorption and Desorption Behavior on Mica. Langmuir, 2002, 18, 1604-1612.	3.5	128
13	Three-Component Langmuir-Blodgett Films with a Controllable Degree of Polarity. Langmuir, 1994, 10, 1225-1234.	3.5	126
14	Effect of Adsorbed Layer Surface Roughness on the QCM-D Response:  Focus on Trapped Water. Langmuir, 2007, 23, 12436-12444.	3.5	117
15	Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties: Effect of Counter ions. ACS Applied Materials & Interfaces, 2014, 6, 6487-6496.	8.0	115
16	Buildup of Polyelectrolyte Multilayers of Polyethyleneimine and Microfibrillated Cellulose Studied by in Situ Dual-Polarization Interferometry and Quartz Crystal Microbalance with Dissipation. Langmuir, 2008, 24, 2509-2518.	3.5	113
17	Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay. Journal of Physical Chemistry C, 2013, 117, 21752-21762.	3.1	113
18	The Effect of Salt Concentration on Adsorption of Low-Charge-Density Polyelectrolytes and Interactions between Polyelectrolyte-Coated Surfaces. Journal of Colloid and Interface Science, 1998, 205, 77-88.	9.4	107

#	Article	IF	CITATIONS
19	Lubrication Properties of Bottle-Brush Polyelectrolytes:  An AFM Study on the Effect of Side Chain and Charge Density. Langmuir, 2008, 24, 3336-3347.	3.5	100
20	Highly Charged Cationic Polyelectrolytes on Mica: Influence of Polyelectrolyte Concentration on Surface Forces. Journal of Colloid and Interface Science, 1994, 166, 343-349.	9.4	97
21	Disjoining Pressure Measurements for Foam Films Stabilized by a Nonionic Sugar-Based Surfactant. Langmuir, 1996, 12, 1336-1342.	3.5	95
22	Polyelectrolyteâ^'Surfactant Layers:Â Adsorption of Preformed Aggregates versus Adsorption of Surfactant to Preadsorbed Polyelectrolyte. Langmuir, 2000, 16, 5257-5266.	3.5	92
23	Forces between Hydrophobic Silanated Glass Surfaces. Langmuir, 1994, 10, 635-639.	3.5	89
24	Self-Assembled Monolayers of Alkanethiolates on Thin Gold Films as Substrates for Surface Force Measurements. Long-Range Hydrophobic Interactions and Electrostatic Double-Layer Interactions. Langmuir, 1998, 14, 4782-4789.	3.5	88
25	Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel. Electrochimica Acta, 2011, 56, 1636-1645.	5.2	87
26	Properties of Poly(ethylene oxide)â^'Poly(butylene oxide) Diblock Copolymers at the Interface between Hydrophobic Surfaces and Water. Journal of Physical Chemistry B, 1997, 101, 4238-4252.	2.6	84
27	Influence of polyaniline and ceria nanoparticle additives on corrosion protection of a UV-cure coating on carbon steel. Corrosion Science, 2014, 84, 189-197.	6.6	84
28	Interaction between Adsorbed Layers of Lysozyme Studied with the Surface Force Technique. Langmuir, 1994, 10, 2325-2334.	3.5	82
29	Mixtures of Cationic Polyelectrolyte and Anionic Surfactant Studied with Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2000, 104, 11689-11694.	2.6	80
30	Mucin layers on hydrophobic surfaces studied with ellipsometry and surface force measurements. Journal of Colloid and Interface Science, 1992, 151, 579-590.	9.4	79
31	Adsorption of cationic surfactants on muscovite mica as quantified by means of ESCA. Journal of Colloid and Interface Science, 1987, 119, 155-167.	9.4	78
32	Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel. Electrochimica Acta, 2008, 53, 4239-4247.	5.2	75
33	Unsaturated Fatty Acids in Alkane Solution:  Adsorption to Steel Surfaces. Langmuir, 2007, 23, 10598-10602.	3.5	70
34	Friction in aqueous media tuned by temperature-responsive polymer layers. Soft Matter, 2010, 6, 2489.	2.7	70
35	Corrosion protection by hydrophobic silica particle-polydimethylsiloxane composite coatings. Corrosion Science, 2015, 99, 89-97.	6.6	69
36	Interactions between a positively charged hydrophobic surface and a negatively charged bare mica surface. Journal of Colloid and Interface Science, 1987, 118, 68-79.	9.4	68

#	Article	IF	CITATIONS
37	The effect of superhydrophobic wetting state on corrosion protection – The AKD example. Journal of Colloid and Interface Science, 2013, 412, 56-64.	9.4	68
38	Comparison of the Adsorption of Different Charge Density Polyelectrolytes:Â A Quartz Crystal Microbalance and X-ray Photoelectron Spectroscopy Study. Langmuir, 2003, 19, 4673-4681.	3.5	67
39	Formation and Stability of Water-Soluble, Molecular Polyelectrolyte Complexes: Effects of Charge Density, Mixing Ratio, and Polyelectrolyte Concentration. Langmuir, 2009, 25, 6113-6121.	3.5	67
40	Direct measurement of surface forces in papermaking and paper coating systems. Nordic Pulp and Paper Research Journal, 1993, 8, 96-104.	0.7	66
41	Forces between polyelectrolyte-coated surfaces: relations between surface interaction and floc properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 93, 293-303.	4.7	66
42	Adsorption Properties of Polyelectrolyteâ^'Surfactant Complexes on Hydrophobic Surfaces Studied by QCM-D. Langmuir, 2006, 22, 7639-7645.	3.5	66
43	Foam and Thin-Liquid-Film Studies of Alkyl Glucoside Systems. Langmuir, 1996, 12, 5271-5278.	3.5	65
44	Interfacial Properties of Aggregates Formed by Cationic Polyelectrolyte and Anionic Surfactant. Langmuir, 2000, 16, 1951-1959.	3.5	65
45	Interactions between Adsorbed Layers of a Low Charge Density Cationic Polyelectrolyte on Mica in the Absence and Presence of Anionic Surfactant. Journal of Colloid and Interface Science, 1997, 190, 476-484.	9.4	64
46	Interactions between Chitosan and SDS at a Low-Charged Silica Substrate Compared to Interactions in the BulkThe Effect of Ionic Strength. Langmuir, 2008, 24, 3814-3827.	3.5	62
47	Stability of Polypeptide Multilayers As Studied by in Situ Ellipsometry:Â Effects of Drying and Post-Buildup Changes in Temperature and pH. Journal of the American Chemical Society, 2004, 126, 17009-17015.	13.7	60
48	Direct measurements of steric interactions between mica surfaces covered with electrostatically bound low-molecular-weight polyethylene oxide. Journal of Colloid and Interface Science, 1987, 117, 366-374.	9.4	59
49	Forces between Glass Surfaces in Aqueous Polyethylenimine Solutions. Langmuir, 2002, 18, 2590-2594.	3.5	59
50	Structure and Hydration of Poly(ethylene oxide) Surfactants at the Air/Liquid Interface. A Vibrational Sum Frequency Spectroscopy Study. Journal of Physical Chemistry C, 2007, 111, 11642-11652.	3.1	59
51	Adsorption of Alkyl Polyglucosides on the Solid/Water Interface:Â Equilibrium Effects of Alkyl Chain Length and Head Group Polymerization. Langmuir, 2004, 20, 4051-4058.	3.5	58
52	Polyelectrolyteâ€surfactant association at solid surfaces. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1008-1013.	0.9	57
53	X-ray Photoelectron Spectroscopy in the Study of Polyelectrolyte Adsorption on Mica and Cellulose. Journal of Physical Chemistry B, 2000, 104, 10032-10042.	2.6	57
54	Short-range interactions between non-ionic surfactant layers. Physical Chemistry Chemical Physics, 2006, 8, 5501.	2.8	56

#	Article	IF	CITATIONS
55	Forces between Proteoheparan Sulfate Layers Adsorbed at Hydrophobic Surfaces. Langmuir, 1994, 10, 1274-1280.	3.5	55
56	Short-Range Interaction between Adsorbed Layers of Human Serum Albumin. Journal of Colloid and Interface Science, 1994, 166, 427-436.	9.4	54
57	The Order of Adding Polyelectrolyte and Salt Affects Surface Forces and Layer Structures. Langmuir, 1995, 11, 4480-4485.	3.5	54
58	Interactions between a 30 Charged Polyelectrolyte and an Anionic Surfactant in Bulk and at a Solidâ^'Liquid Interface. Journal of Physical Chemistry B, 1998, 102, 1270-1278.	2.6	54
59	Adsorption of a Cationic Polyelectrolyte followed by Surfactant-Induced Swelling, Studied with a Quartz Crystal Microbalance. Langmuir, 2002, 18, 1274-1280.	3.5	54
60	Polyelectrolytes as adhesion modifiers. Advances in Colloid and Interface Science, 2003, 104, 53-74.	14.7	54
61	Chitosan-N-poly(ethylene oxide) brush polymers for reduced nonspecific protein adsorption. Journal of Colloid and Interface Science, 2007, 305, 62-71.	9.4	54
62	Aqueous molybdate provides effective corrosion inhibition of WE43 magnesium alloy in sodium chloride solutions. Corrosion Science, 2021, 190, 109664.	6.6	54
63	Stability of arachidic acid monolayers on aqueous salt solutions. Journal of Colloid and Interface Science, 1990, 138, 245-254.	9.4	53
64	Surfaces coated with protein layers: a surface force and ESCA study. Biomaterials, 1998, 19, 371-386.	11.4	53
65	Surface Properties of Tetra(ethylene oxide) Dodecyl Amide Compared with Poly(ethylene oxide) Surfactants. 1. Effect of the Headgroup on Adsorption. Langmuir, 2002, 18, 6745-6753.	3.5	53
66	Adsorption of Low Charge Density Polyelectrolyte Containing Poly(ethylene oxide) Side Chains on Silica:A Effects of Ionic Strength and pH. Macromolecules, 2005, 38, 6152-6160.	4.8	53
67	Aqueous foams stabilized by n-dodecyl-β-d-maltoside, hexaethyleneglycol monododecyl ether, and their 1 : 1 mixture. Soft Matter, 2009, 5, 3070.	2.7	53
68	Adsorption Characteristics of Bottle-Brush Polymers on Silica: Effect of Side Chain and Charge Density. Langmuir, 2008, 24, 5341-5349.	3.5	52
69	Surface and corrosion properties of AA6063-T5 aluminum alloy in molybdate-containing sodium chloride solutions. Corrosion Science, 2020, 171, 108658.	6.6	52
70	Interactions between Mica Surfaces in Sodium Polyacrylate Solutions Containing Calcium Ions. Journal of Colloid and Interface Science, 1993, 161, 182-189.	9.4	50
71	Stabilization by chitosan of soybean oil emulsions coated with phospholipid and glycocholic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 71, 187-195.	4.7	50
72	Investigating the Adsorption of the Gemini Surfactant "12â^'2â^'12―onto Mica Using Atomic Force Microscopy and Surface Force Apparatus Measurements. Langmuir, 1999, 15, 3924-3934.	3.5	49

#	Article	IF	CITATIONS
73	Corrosion Inhibition of Aluminum Alloy AA6063-T5 by Vanadates: Microstructure Characterization and Corrosion Analysis. Journal of the Electrochemical Society, 2018, 165, C116-C126.	2.9	49
74	FOAM FILMS AND SURFACE FORCE STUDIES OF AQUEOUS SOLUTONS OF OCTYL-Î ² -GLUCOSIDE. Journal of Dispersion Science and Technology, 1994, 15, 273-296.	2.4	48
75	Application of the JKR Method to the Measurement of Adhesion to Langmuir–Blodgett Cellulose Surfaces. Journal of Colloid and Interface Science, 2000, 230, 441-447.	9.4	48
76	Surface Interactions during Polyelectrolyte Multilayer Buildup. 1. Interactions and Layer Structure in Dilute Electrolyte Solutions. Langmuir, 2004, 20, 5432-5438.	3.5	48
77	Viscoelastic Properties of Adsorbed Bottle-brush Polymer Layers Studied by Quartz Crystal Microbalance — Dissipation Measurements. Journal of Physical Chemistry C, 2008, 112, 15028-15036.	3.1	47
78	Temperature-dependent forces between hydrophobic surfaces coated with ethyl hydroxyethyl cellulose. Langmuir, 1990, 6, 1572-1578.	3.5	46
79	A Small-Angle X-ray Scattering Study of Complexes Formed in Mixtures of a Cationic Polyelectrolyte and an Anionic Surfactant. Journal of Physical Chemistry B, 2002, 106, 11412-11419.	2.6	46
80	Low friction and high load bearing capacity layers formed by cationic-block-non-ionic bottle-brush copolymers in aqueous media. Soft Matter, 2013, 9, 5361.	2.7	46
81	Wettability and swelling of acetylated and furfurylated wood analyzed by multicycle Wilhelmy plate method. Holzforschung, 2016, 70, 69-77.	1.9	46
82	pH-dependent interactions of mica surfaces in aqueous dodecylammonium/dodecylamine solutions. Langmuir, 1992, 8, 176-183.	3.5	45
83	Effect of anionic surfactant on interactions between lysozyme layers adsorbed on mica. Langmuir, 1993, 9, 2102-2108.	3.5	45
84	Toward Homogeneous Nanostructured Polyaniline/Resin Blends. ACS Applied Materials & Interfaces, 2011, 3, 1681-1691.	8.0	45
85	Plasma modification of mica. Journal of Colloid and Interface Science, 1990, 134, 449-458.	9.4	44
86	Interactions between Nonpolar Surfaces Coated with the Nonionic Surfactant Hexaoxyethylene Dodecyl Ether C12E6and the Origin of Surface Charges at the Air/Water Interface. Langmuir, 2004, 20, 4977-4988.	3.5	44
87	Structural and Nanomechanical Properties of Paperboard Coatings Studied by Peak Force Tapping Atomic Force Microscopy. ACS Applied Materials & Interfaces, 2012, 4, 5534-5541.	8.0	44
88	Studies ofN-Dodecyllactobionamide, Maltose 6â€~-O-Dodecanoate, and Octyl-β-glucoside with Surface Tension, Surface Force, and Wetting Techniques. Langmuir, 2001, 17, 1941-1949.	3.5	43
89	Active corrosion protection by conductive composites of polyaniline in a UV-cured polyester acrylate coating. Progress in Organic Coatings, 2016, 90, 154-162.	3.9	43
90	Biolubrication synergy: Hyaluronan – Phospholipid interactions at interfaces. Advances in Colloid and Interface Science, 2019, 274, 102050.	14.7	43

#	Article	IF	CITATIONS
91	Corrosion inhibition of aluminium alloy AA6063-T5 by vanadates: Local surface chemical events elucidated by confocal Raman micro-spectroscopy. Corrosion Science, 2019, 148, 237-250.	6.6	43
92	Investigation of a 31 Charged Cationic Polyelectrolyte Interacting with Sodium Dodecyl Sulfate in Bulk Solution and as a Preadsorbed Layer on Mica. Low Ionic Strength. Langmuir, 1998, 14, 5366-5375.	3.5	42
93	Structural forces reflecting polyelectrolyte organization from bulk solutions and within surface complexes. Advances in Colloid and Interface Science, 2002, 96, 1-20.	14.7	42
94	Surface Properties of Bottle-Brush Polyelectrolytes on Mica:  Effects of Side Chain and Charge Densities. Langmuir, 2007, 23, 12222-12232.	3.5	42
95	Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles. Journal of Colloid and Interface Science, 2017, 488, 225-233.	9.4	42
96	Equilibrium Wetting Studies of Cationic Surfactant Adsorption on Mica. Journal of Colloid and Interface Science, 1996, 181, 476-489.	9.4	40
97	Effect of Polymer Architecture on the Adsorption Properties of a Nonionic Polymer. Langmuir, 2008, 24, 6676-6682.	3.5	40
98	Electrostatically Anchored Branched Brush Layers. Langmuir, 2012, 28, 15537-15547.	3.5	40
99	Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Journal of Colloid and Interface Science, 2016, 468, 21-33.	9.4	40
100	Corrosion protective properties of cellulose nanocrystals reinforced waterborne acrylate-based composite coating. Corrosion Science, 2019, 155, 186-194.	6.6	40
101	Poly(ethylene oxide) surface coatings: Relations between intermolecular forces, layer structure and protein repellency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 77, 109-118.	4.7	39
102	Small-Angle Neutron Scattering Study of Mixtures of Cationic Polyelectrolyte and Anionic Surfactant:Â Effect of Polyelectrolyte Charge Density. Journal of Physical Chemistry B, 2004, 108, 1874-1881.	2.6	39
103	Interfacial Behavior of n-Decyl-β-D-maltopyranoside on Hydrophobic Interfaces and the Effect of Small Amounts of Surface-Active Impurities. Journal of Colloid and Interface Science, 2002, 251, 182-192.	9.4	38
104	Direct measurements of the attraction between solvophobic surfaces in ethylene glycol and mixtures with water. Langmuir, 1992, 8, 757-759.	3.5	36
105	Surface Forces between Plasma Polymer Films. Langmuir, 1994, 10, 2766-2773.	3.5	36
106	Interactions between cellulose surfaces: effect of solution pH. Journal of Adhesion Science and Technology, 2000, 14, 603-618.	2.6	36
107	Interfacial Behavior ofn-Octyl β-d-Glucopyranoside Compared to That of a Technical Mixture Consisting of Octyl Glucosides. Langmuir, 2000, 16, 10227-10235.	3.5	36
108	Interfacial Films of Poly(ethylene oxide)â^'Poly(butylene oxide) Block Copolymers Characterized by Disjoining Pressure Measurements, in Situ Ellipsometry, and Surface Tension Measurements. Langmuir, 2002, 18, 5213-5221.	3.5	36

#	Article	IF	CITATIONS
109	Soluble complexes in aqueous mixtures of low charge density comb polyelectrolyte and oppositely charged surfactant probed by scattering and NMR. Journal of Colloid and Interface Science, 2007, 312, 21-33.	9.4	36
110	Protein interactions with bottle-brush polymer layers: Effect of side chain and charge density ratio probed by QCM-D and AFM. Journal of Colloid and Interface Science, 2010, 349, 265-274.	9.4	36
111	Structure of DPPC–hyaluronan interfacial layers – effects of molecular weight and ion composition. Soft Matter, 2016, 12, 729-740.	2.7	36
112	Surface Grafted Chitosan Gels. Part II. Gel Formation and Characterization. Langmuir, 2014, 30, 8878-8888.	3.5	35
113	Nanoscale Electrical and Mechanical Characteristics of Conductive Polyaniline Network in Polymer Composite Films. ACS Applied Materials & Interfaces, 2014, 6, 19168-19175.	8.0	35
114	Synergistic effects of metal-induced aggregation of human serum albumin. Colloids and Surfaces B: Biointerfaces, 2019, 173, 751-758.	5.0	35
115	Immobilization of Enamel Matrix Derivate Protein onto Polypeptide Multilayers. Comparative in Situ Measurements Using Ellipsometry, Quartz Crystal Microbalance with Dissipation, and Dual-Polarization Interferometry. Langmuir, 2006, 22, 11065-11071.	3.5	34
116	Aggregation of Modified Celluloses in Aqueous Solution: Transition from Methylcellulose to Hydroxypropylmethylcellulose Solution Properties Induced by a Low-Molecular-Weight Oxyethylene Additive. Langmuir, 2012, 28, 13562-13569.	3.5	34
117	The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: Structure and lubrication performance. Journal of Colloid and Interface Science, 2015, 445, 84-92.	9.4	34
118	Temperature-dependent adsorption and surface forces in aqueous ethyl(hydroxyethyl)cellulose solutions. Langmuir, 1991, 7, 988-994.	3.5	33
119	Interactions between Mica Surfaces in the Presence of Carbohydrates. Journal of Colloid and Interface Science, 1995, 172, 415-424.	9.4	33
120	Hydrolysis and Condensation of Alkylmethoxysilanes. Studied by Means of the Langmuir-Blodgett Technique and Electron Spectroscopy for Chemical Analysis. Langmuir, 1995, 11, 2652-2660.	3.5	33
121	Alkyl Glucosides on Hydrophobic Surfaces Studied by Surface Force and Wetting Measurements. Journal of Colloid and Interface Science, 1996, 183, 506-514.	9.4	33
122	Modeling of Bottle-Brush Polymer Adsorption onto Mica and Silica Surfaces. Macromolecules, 2009, 42, 6310-6318.	4.8	33
123	Influence of Surface Topography on Adhesive and Long-Range Capillary Forces between Hydrophobic Surfaces in Water. Langmuir, 2009, 25, 9197-9207.	3.5	33
124	Synergies in lubrication. Physical Chemistry Chemical Physics, 2017, 19, 23677-23689.	2.8	33
125	Desorption of Low-Charge-Density Polyelectrolyte Adlayers in Aqueous Sodium n-Dodecyl Sulfate Solution. Journal of Colloid and Interface Science, 2001, 237, 104-111.	9.4	32
126	Robust Hydrophobic Surfaces Displaying Different Surface Roughness Scales While Maintaining the Same Wettability. Langmuir, 2011, 27, 8153-8159.	3.5	32

#	Article	IF	CITATIONS
127	Nanomechanical mapping of a high curvature polymer brush grafted from a rigid nanoparticle. Soft Matter, 2012, 8, 8312.	2.7	32
128	Adsorption and Aggregation of Cationic Amphiphilic Polyelectrolytes on Silica. Langmuir, 2005, 21, 2855-2864.	3.5	31
129	Enhanced Adsorption of Alkyl Glucosides on the Silica/Water Interface by Addition of Amine Oxides. Langmuir, 2005, 21, 2766-2772.	3.5	31
130	In situ confocal Raman micro-spectroscopy and electrochemical studies of mussel adhesive protein and ceria composite film on carbon steel in salt solutions. Electrochimica Acta, 2013, 107, 276-291.	5.2	31
131	From force curves to surface nanomechanical properties. Physical Chemistry Chemical Physics, 2017, 19, 23642-23657.	2.8	31
132	Structural Properties of β-Dodecylmaltoside and C ₁₂ E ₆ Mixed Micelles. Langmuir, 2009, 25, 7296-7303.	3.5	30
133	Shear Response of Nanoconfined Water on Muscovite Mica: Role of Cations. Langmuir, 2011, 27, 10351-10355.	3.5	30
134	Direct measurements of the interaction between layers of insulin adsorbed on hydrophobic surfaces. Journal of Colloid and Interface Science, 1989, 130, 457-466.	9.4	29
135	Temperature-dependent forces between hydrophilic mica surfaces coated with ethyl hydroxyethyl cellulose. Langmuir, 1991, 7, 2248-2252.	3.5	29
136	Monoglyceride surface films: Stability and interlayer interactions. Journal of Colloid and Interface Science, 1991, 144, 449-457.	9.4	29
137	Interactions in Equilibrium Free Films of Aqueous Dodecylammonium Chloride Solutions. Journal of Colloid and Interface Science, 1994, 168, 190-197.	9.4	29
138	Interactions between Hydrophilic Mica Surfaces in Triolein:Â Triolein Surface Orientation, Solvation Forces, and Capillary Condensation. Langmuir, 1997, 13, 1682-1688.	3.5	29
139	Stability of dimethyldioctadecylammonium bromide Langmuir-Blodgett films on mica in aqueous salt solutions—implications for surface force measurements. Thin Solid Films, 1997, 300, 240-255.	1.8	29
140	Effect of Structural Stability on the Characteristics of Adsorbed Layers of T4 Lysozyme. Langmuir, 1998, 14, 456-462.	3.5	29
141	Surface properties of surfactants derived from natural products. Part 2: Structure/property relationships—Foaming, dispersion, and wetting. Journal of Surfactants and Detergents, 2004, 7, 161-167.	2.1	29
142	Amontonian frictional behaviour of nanostructured surfaces. Physical Chemistry Chemical Physics, 2011, 13, 9318.	2.8	29
143	Nano-scale mechanical and wear properties of a waterborne hydroxyacrylic-melamine anti-corrosion coating. Applied Surface Science, 2018, 457, 548-558.	6.1	29
144	Forces between Xylan-Coated Surfaces: Effect of Polymer Charge Density and Background Electrolyte. Journal of Colloid and Interface Science, 2001, 242, 59-66.	9.4	28

#	Article	IF	CITATIONS
145	Solvent segregation and capillary evaporation at a superhydrophobic surface investigated by confocal Raman microscopy and force measurements. Soft Matter, 2011, 7, 1045-1052.	2.7	28
146	In situ investigations of Fe3+ induced complexation of adsorbed Mefp-1 protein film on iron substrate. Journal of Colloid and Interface Science, 2013, 404, 62-71.	9.4	28
147	Molecular synergy in biolubrication: The role of cartilage oligomeric matrix protein (COMP) in surface-structuring of lubricin. Journal of Colloid and Interface Science, 2017, 495, 200-206.	9.4	28
148	The stability of carboxylic acid Langmuir-Blodgett films as studied by the surface force technique. Thin Solid Films, 1989, 176, 157-164.	1.8	27
149	Coadsorption and Surface Forces for Selective Surfaces in Contact with Aqueous Mixtures of Oppositely Charged Surfactants and Low Charge Density Polyelectrolytes. Langmuir, 2004, 20, 3221-3230.	3.5	27
150	Surface properties of surfactants derived from natural products. Part 1: Syntheses and structure/property relationships—Solubility and emulsification. Journal of Surfactants and Detergents, 2004, 7, 147-159.	2.1	27
151	Sustained Frictional Instabilities on Nanodomed Surfaces: Stick–Slip Amplitude Coefficient. ACS Nano, 2013, 7, 10850-10862.	14.6	27
152	Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung, 2016, 70, 527-537.	1.9	27
153	Adsorption characteristics of brush polyelectrolytes on silicon oxynitride revealed by dual polarization interferometry. Journal of Colloid and Interface Science, 2010, 348, 189-197.	9.4	26
154	Adsorption of Mefp-1: Influence of pH on adsorption kinetics and adsorbed amount. Journal of Colloid and Interface Science, 2012, 379, 107-113.	9.4	26
155	Surface Grafted Chitosan Gels. Part I. Molecular Insight into the Formation of Chitosan and Poly(acrylic acid) Multilayers. Langmuir, 2014, 30, 8866-8877.	3.5	26
156	Comparison of a Brush-with-Anchor and a Train-of-Brushes Mucin on Poly(methyl methacrylate) Surfaces: Adsorption, Surface Forces, and Friction. Biomacromolecules, 2014, 15, 1515-1525.	5.4	25
157	Interaction and adsorption of polyelectrolytes on mica. Nordic Pulp and Paper Research Journal, 1993, 8, 62-67.	0.7	25
158	Interactions between Modified Mica Surfaces in Triglyceride Media. Langmuir, 1998, 14, 5546-5554.	3.5	24
159	Multicycle Wilhelmy Plate Method for Wetting Properties, Swelling and Liquid Sorption of Wood. Langmuir, 2013, 29, 12145-12153.	3.5	24
160	Forces between non-ionic surfactant layers. Faraday Discussions of the Chemical Society, 1990, 90, 129-142.	2.2	23
161	Fluorosurfactant Self-Assembly at Solid/Liquid Interfaces. Langmuir, 2002, 18, 8085-8095.	3.5	23
162	Probing material properties of polymeric surface layers with tapping mode AFM: Which cantilever spring constant, tapping amplitude and amplitude set point gives good image contrast and minimal surface damage?. Ultramicroscopy, 2010, 110, 313-319.	1.9	23

#	Article	IF	CITATIONS
163	Thin Composite Films of Mussel Adhesive Proteins and Ceria Nanoparticles on Carbon Steel for Corrosion Protection. Journal of the Electrochemical Society, 2012, 159, C364-C371.	2.9	23
164	Micro-Galvanic Corrosion Effects on Patterned Copper-Zinc Samples during Exposure in Humidified Air Containing Formic Acid. Journal of the Electrochemical Society, 2013, 160, C423-C431.	2.9	23
165	Physical crosslinking of hyaluronic acid in the presence of phospholipids in an aqueous nano-environment. Soft Matter, 2018, 14, 8997-9004.	2.7	23
166	Effect of Sodium Dodecyl Sulfate on Adsorbed Layers of Branched Polyethylene Imine. Journal of Physical Chemistry B, 2004, 108, 11645-11653.	2.6	22
167	Microstructure influence on corrosion behavior of a Fe–Cr–V–N tool alloy studied by SEM/EDS, scanning Kelvin force microscopy and electrochemical measurement. Corrosion Science, 2013, 66, 153-159.	6.6	22
168	Nanostructured Composite Layers of Mussel Adhesive Protein and Ceria Nanoparticles. Langmuir, 2013, 29, 9551-9561.	3.5	22
169	Wettability and liquid sorption of wood investigated by Wilhelmy plate method. Wood Science and Technology, 2014, 48, 161-176.	3.2	22
170	Microstructure of chemically modified wood using X-ray computed tomography in relation to wetting properties. Holzforschung, 2017, 71, 119-128.	1.9	22
171	Forces between carboxylic acid layers in divalent salt solutions. Thin Solid Films, 1989, 178, 261-270.	1.8	21
172	Interactions between Nonpolar Surfaces Coated with the Nonionic Surfactantn-Dodecyl-β-d-maltoside. Langmuir, 2005, 21, 11836-11843.	3.5	21
173	Interactions between bottle-brush polyelectrolyte layers: Effects of ionic strength and oppositely charged surfactant. Journal of Colloid and Interface Science, 2008, 323, 191-202.	9.4	21
174	Modeling of Bottle-Brush Polymer Adsorption onto Mica and Silica Surfaces: Effect of Side-Chain Length. Macromolecules, 2010, 43, 2076-2083.	4.8	21
175	Controlling the interaction of poly(ethylene imine) adsorption layers with oppositely charged surfactant by tuning the structure of the preadsorbed polyelectrolyte layer. Soft Matter, 2011, 7, 10701.	2.7	21
176	Poly(Ethylene Oxide) Star Polymer Adsorption at the Silica/Aqueous Interface and Displacement by Linear Poly(Ethylene Oxide). Langmuir, 2013, 29, 3999-4007.	3.5	21
177	UVâ€curable acrylateâ€based nanocomposites: effect of polyaniline additives on the curing performance. Polymers for Advanced Technologies, 2013, 24, 668-678.	3.2	21
178	Association of anionic surfactant and physisorbed branched brush layers probed by neutron and optical reflectometry. Journal of Colloid and Interface Science, 2015, 440, 245-252.	9.4	21
179	Long-term corrosion protection by a thin nano-composite coating. Applied Surface Science, 2015, 357, 2333-2342.	6.1	21
180	The influence of hyaluronan on the structure of a DPPC—bilayer under high pressures. Colloids and Surfaces B: Biointerfaces, 2016, 142, 230-238.	5.0	21

#	Article	IF	CITATIONS
181	Forces between Carboxylic Acid Surfaces in Divalent Electrolyte Solutions. Journal of Colloid and Interface Science, 2000, 229, 123-128.	9.4	20
182	Weakly Charged Polyelectrolyte Adsorption to Glass and Cellulose Studied by Surface Force Technique. Langmuir, 2002, 18, 1184-1189.	3.5	20
183	Interaction Forces between Talc and Pitch Probed by Atomic Force Microscopy. Langmuir, 2007, 23, 4248-4256.	3.5	20
184	Investigation of the formation, structure and release characteristics of self-assembled composite films of cellulose nanofibrils and temperature responsive microgels. Soft Matter, 2011, 7, 1369-1377.	2.7	20
185	Reversible Condensation of Mucins into Nanoparticles. Langmuir, 2018, 34, 13615-13625.	3.5	20
186	Forces in dimethyldodecylamine oxide- and dimethyldodecylphosphine oxide-water systems measured with an osmotic stress technique. Langmuir, 1993, 9, 2926-2932.	3.5	19
187	Desorption of Lysozyme Layers by Sodium Dodecyl Sulfate Studied with the Surface Force Technique. Langmuir, 1999, 15, 1410-1417.	3.5	19
188	Terpyridine-functionalized stimuli-responsive microgels and their assembly through metal–ligand interactions. Polymer Chemistry, 2018, 9, 1032-1039.	3.9	19
189	Comparison of different surface disinfection treatments of drinking water facilities from a corrosion and environmental perspective. Environmental Science and Pollution Research, 2020, 27, 12704-12716.	5.3	19
190	Temperature responsive surface layers of modified celluloses. Physical Chemistry Chemical Physics, 2011, 13, 4260.	2.8	18
191	Electrochemical, atomic force microscopy and infrared reflection absorption spectroscopy studies of pre-formed mussel adhesive protein films on carbon steel for corrosion protection. Thin Solid Films, 2012, 520, 7136-7143.	1.8	18
192	Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces. Physical Chemistry Chemical Physics, 2013, 15, 17893.	2.8	18
193	Towards the mechanism of electrochemical activity and self-healing of 1 wt% PTSA doped polyaniline in alkyd composite polymer coating: combined AFM-based studies. RSC Advances, 2016, 6, 19111-19127.	3.6	18
194	Intracellular Fate of Hydrophobic Nanocrystal Selfâ€Assemblies in Tumor Cells. Advanced Functional Materials, 2020, 30, 2004274.	14.9	18
195	Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis. ACS Applied Materials & Interfaces, 2021, 13, 3336-3348.	8.0	18
196	Surface Properties of Tetra(ethylene oxide) Dodecyl Amide Compared with Poly(ethylene oxide) Surfactants. 2. Effect of the Headgroup on Surface Forces. Langmuir, 2002, 18, 6754-6763.	3.5	17
197	Temperature-Dependent Nanomechanical Properties of Adsorbed Poly-NIPAm Microgel Particles Immersed in Water. Langmuir, 2021, 37, 1902-1912.	3.5	17
198	Elastohydrodynamic effects with adsorbed layers in surface force measurements. Journal of Colloid and Interface Science, 1990, 138, 291-293.	9.4	16

#	Article	IF	CITATIONS
199	Adsorption of an Ethoxylated Amine Surfactant on Mica and Its Effect on the Surface Forces. Journal of Colloid and Interface Science, 1993, 156, 365-376.	9.4	16
200	Desorption of bottle-brush polyelectrolytes from silica by addition of linear polyelectrolytes studied by QCM-D and reflectometry. Journal of Colloid and Interface Science, 2008, 323, 223-228.	9.4	16
201	Octadecanethiol as Corrosion Inhibitor for Zinc and Patterned Zinc-Copper in Humidified Air with Formic Acid. Journal of the Electrochemical Society, 2014, 161, C330-C338.	2.9	16
202	Viscoelastic Properties of Isomeric Alkylglucoside Surfactants Studied by Surface Light Scattering. Journal of Physical Chemistry B, 2005, 109, 22440-22448.	2.6	15
203	Influence of Wetting and Dispersing Agents on the Interaction between Talc and Hydrophobic Particles. Langmuir, 2009, 25, 6909-6915.	3.5	15
204	Adsorption Characteristics of Stoichiometric and Nonstoichiometric Molecular Polyelectrolyte Complexes on Silicon Oxynitride Surfaces. Langmuir, 2011, 27, 1044-1050.	3.5	15
205	Direct Measurement of Colloidal Interactions between Polyaniline Surfaces in a UV-Curable Coating Formulation: The Effect of Surface Hydrophilicity/Hydrophobicity and Resin Composition. Langmuir, 2014, 30, 1045-1054.	3.5	15
206	Effects of protonation on foaming properties of dodecyldimethylamine oxide solutions: a pH-study. Soft Matter, 2015, 11, 561-571.	2.7	15
207	Temperature-Dependent Deicing Properties of Electrostatically Anchored Branched Brush Layers of Poly(ethylene oxide). Langmuir, 2016, 32, 4194-4202.	3.5	15
208	Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite. Journal of Colloid and Interface Science, 2017, 494, 204-214.	9.4	15
209	Interactions of a short hyaluronan chain with a phospholipid membrane. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110539.	5.0	15
210	Nano-scale mechanical and wear properties of a corrosion protective coating reinforced by cellulose nanocrystals – Initiation of coating degradation. Applied Surface Science, 2021, 537, 147789.	6.1	15
211	Effect of Surface Depressions on Wetting and Interactions between Hydrophobic Pore Array Surfaces. Langmuir, 2012, 28, 11121-11130.	3.5	14
212	Temperature-Dependent Adsorption and Adsorption Hysteresis of a Thermoresponsive Diblock Copolymer. Langmuir, 2014, 30, 4333-4341.	3.5	14
213	Effect of solvent quality and chain density on normal and frictional forces between electrostatically anchored thermoresponsive diblock copolymer layers. Journal of Colloid and Interface Science, 2017, 487, 88-96.	9.4	14
214	Influence of Glycosylation on Interfacial Properties of Recombinant Mucins: Adsorption, Surface Forces, and Friction. Langmuir, 2017, 33, 4386-4395.	3.5	14
215	Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor. Nature Communications, 2022, 13, .	12.8	14
216	Amontonian Friction Induced by Flexible Surface Features on Microstructured Silicon. ACS Applied Materials & Interfaces, 2011, 3, 3432-3439.	8.0	13

#	Article	IF	CITATIONS
217	Adsorption and Solution Properties of Bottle-Brush Polyelectrolyte Complexes: Effect of Molecular Weight and Stoichiometry. Langmuir, 2012, 28, 6618-6631.	3.5	13
218	Toward Superhydrophobic Polydimethylsiloxaneâ^'Silica Particle Coatings. Journal of Dispersion Science and Technology, 2016, 37, 1375-1383.	2.4	13
219	Modeling and Measuring Viscoelasticity with Dynamic Atomic Force Microscopy. Physical Review Applied, 2018, 10, .	3.8	13
220	Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface. ACS Nano, 2019, 13, 2246-2252.	14.6	13
221	Iceland spar calcite: Humidity and time effects on surface properties and their reversibility. Journal of Colloid and Interface Science, 2019, 541, 42-55.	9.4	13
222	A Comparison of Three Methods for the Convenient Determination of Sodium Dodecyl Sulfate in Aqueous Solutions. Journal of Colloid and Interface Science, 1998, 198, 261-265.	9.4	12
223	Effect of Graft Density on the Nonionic Bottle Brush Polymer/Surfactant Interaction. Langmuir, 2009, 25, 11383-11389.	3.5	12
224	Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer. Journal of Colloid and Interface Science, 2015, 443, 162-169.	9.4	12
225	Bioinspired Adhesion Polymers: Wear Resistance of Adsorption Layers. Langmuir, 2019, 35, 15515-15525.	3.5	12
226	Load-dependent surface nanomechanical properties of poly-HEMA hydrogels in aqueous medium. Soft Matter, 2019, 15, 7704-7714.	2.7	12
227	Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging. Langmuir, 2019, 35, 13275-13285.	3.5	12
228	Polymer Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Langmuir, 2021, 37, 3015-3024.	3.5	12
229	Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics. International Journal of Molecular Sciences, 2021, 22, 12360.	4.1	12
230	Reactions of two hydrophilic surfaces with detergents, protein and whole human blood. Colloids and Surfaces B: Biointerfaces, 1997, 9, 67-79.	5.0	11
231	Characterization of adsorption sites on a quartz powder from ESCA analysis of an adsorbed fatty diamine. Surface and Interface Analysis, 1999, 27, 915-929.	1.8	11
232	Rheological properties of phospholipid-stabilized parenteral oil-in-water emulsions—effects of electrolyte concentration and presence of heparin. International Journal of Pharmaceutics, 2003, 252, 123-132.	5.2	11
233	Comment on "Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate:  Effect of Electrolyte―and Subsequent Criticism. Langmuir, 2007, 23, 12457-12460.	3.5	11
234	Surface and friction forces between grafted polysaccharide layers in the absence and presence of surfactant. Journal of Colloid and Interface Science, 2011, 364, 351-358.	9.4	11

#	Article	IF	CITATIONS
235	Cationic Poly(<i>N</i> -isopropylacrylamide) Block Copolymer Adsorption Investigated by Dual Polarization Interferometry and Lattice Mean–Field Theory. Langmuir, 2012, 28, 14028-14038.	3.5	11
236	Kinetic and Equilibrium Aspects of Adsorption and Desorption of Class II Hydrophobins HFBI and HFBII at Silicon Oxynitride/Water and Air/Water Interfaces. Langmuir, 2013, 29, 2683-2691.	3.5	11
237	Salt- and pH-induced desorption: Comparison between non-aggregated and aggregated mussel adhesive protein, Mefp-1, and a synthetic cationic polyelectrolyte. Journal of Colloid and Interface Science, 2013, 408, 82-86.	9.4	11
238	Interactions between model cell membranes and the neuroactive drug propofol. Journal of Colloid and Interface Science, 2018, 526, 230-243.	9.4	11
239	Comparative study of CNC and CNF as additives in waterborne acrylate-based anti-corrosion coatings. Journal of Dispersion Science and Technology, 2020, 41, 2037-2047.	2.4	11
240	Spontaneous Formation of Reverse Vesicles with Soybean Phosphatidyl Ethanolamine in Mixture with Triglyceride and Some Water. Langmuir, 1999, 15, 8072-8079.	3.5	10
241	Interaction of sodium dodecyl sulfate and high charge density comb polymers at the silica/water interface. Soft Matter, 2009, 5, 3646.	2.7	10
242	Temperature-Dependent Competition between Adsorption and Aggregation of a Cellulose Ether—Simultaneous Use of Optical and Acoustical Techniques for Investigating Surface Properties. Langmuir, 2012, 28, 9515-9525.	3.5	10
243	Hydrophobic pore array surfaces: Wetting and interaction forces in water/ethanol mixtures. Journal of Colloid and Interface Science, 2013, 396, 278-286.	9.4	10
244	Tuning structural forces between silica surfaces by temperature-induced micellization of responsive block copolymers. Physical Chemistry Chemical Physics, 2010, 12, 10730.	2.8	9
245	Tethered Poly(2-isopropyl-2-oxazoline) Chains: Temperature Effects on Layer Structure and Interactions Probed by AFM Experiments and Modeling. Langmuir, 2015, 31, 3039-3048.	3.5	9
246	Friction at nanopillared polymer surfaces beyond Amontons' laws: Stick-slip amplitude coefficient (SSAC) and multiparametric nanotribological properties. Journal of Colloid and Interface Science, 2021, 583, 414-424.	9.4	9
247	Nanoscale Mechanical Properties of Core–Shell-like Poly-NIPAm Microgel Particles: Effect of Temperature and Cross-Linking Density. Journal of Physical Chemistry B, 2021, 125, 9860-9869.	2.6	9
248	Bioinspired Bottlebrush Polymers for Aqueous Boundary Lubrication. Polymers, 2022, 14, 2724.	4.5	9
249	Note on adhesion values from direct force measurements. Journal of Colloid and Interface Science, 1990, 139, 589-590.	9.4	8
250	Surface forces and friction between non-polar surfaces coated by temperature-responsive methylcellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 701-708.	4.7	8
251	Water Dispersive Suprastructures: An Organizational Impact on Nanomechanical Properties. Advanced Materials Interfaces, 2021, 8, 2001687.	3.7	8
252	Nanoscale Wear and Mechanical Properties of Calcite: Effects of Stearic Acid Modification and Water Vapor. Langmuir, 2021, 37, 9826-9837.	3.5	8

#	Article	IF	CITATIONS
253	Competitive Destabilization/Stabilization of βâ€Lactoglobulin Foam by PEOâ€PPOâ€PEO Polymeric Surfactants. Journal of Dispersion Science and Technology, 2006, 27, 527-536.	2.4	7
254	Interactions between Adsorbed Layers of Cationic Gemini Surfactants. Langmuir, 2008, 24, 1133-1140.	3.5	7
255	Temperature-dependent adsorption of cellulose ethers on silica and hydrophobized silica immersed in aqueous polymer solution. RSC Advances, 2011, 1, 305.	3.6	7
256	Frictional behavior of micro-patterned silicon surface. Journal of Colloid and Interface Science, 2015, 456, 76-84.	9.4	7
257	Mechanical Properties of Organic Electronic Polymers on the Nanoscale. Advanced Electronic Materials, 2022, 8, .	5.1	7
258	Forces between Surfaces Coated with a Polymerizable Surfactant before and after Polymerization. Journal of Colloid and Interface Science, 1994, 163, 289-298.	9.4	6
259	Corrosion Inhibition of Two Brass Alloys by Octadecanethiol in Humidified Air with Formic Acid. Corrosion, 2015, 71, 908-917.	1.1	6
260	Heating-Induced Enhancement of Corrosion Protection of Carbon Steel by a Nanocomposite Film Containing Mussel Adhesive Protein. Journal of the Electrochemical Society, 2017, 164, C188-C193.	2.9	6
261	Influence of the Molecular Weight and the Presence of Calcium Ions on the Molecular Interaction of Hyaluronan and DPPC. Molecules, 2020, 25, 3907.	3.8	6
262	INTERACTIONS BETWEEN POLY(ETHYLENE OXIDE) COATED SURFACES AND BETWEEN SUCH SURFACES AND PROTEINS. Journal of Dispersion Science and Technology, 1998, 19, 1107-1126.	2.4	5
263	Aggregation of inkjet ink components by Ca and Mg ions in relation to colorant pigment distribution in paper. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456, 92-99.	4.7	5
264	Background-Force Compensation in Dynamic Atomic Force Microscopy. Physical Review Applied, 2017, 7,	3.8	5
265	Polymersomes at the solid-liquid interface: Dynamic morphological transformation and lubrication. Journal of Colloid and Interface Science, 2018, 512, 260-271.	9.4	5
266	Surface-Modified and Unmodified Calcite: Effects of Water and Saturated Aqueous Octanoic Acid Droplets on Stability and Saturated Fatty Acid Layer Organization. Langmuir, 2021, 37, 14135-14146.	3.5	5
267	The Stabilization of Aqueous PEOâ€₽POâ€₽EO Triblock Copolymer Foam. Journal of Dispersion Science and Technology, 2006, 27, 469-479.	2.4	4
268	Globotriose- and Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers:Â Surface Forces, Wetting, and Surfactant Adsorption. Langmuir, 2006, 22, 10038-10046.	3.5	4
269	Influence of high hydrostatic pressure on solid supported DPPC bilayers with hyaluronan in the presence of Ca2+ ions. Soft Matter, 2019, 15, 7295-7304.	2.7	4
270	Proteins at Surfaces Studied with the Surface Force Technique. ACS Symposium Series, 1995, , 296-310.	0.5	3

#	Article	IF	CITATIONS
271	Interactions between hydrophilic surfaces in triglyceride media—information obtained from surface force measurements. Food Hydrocolloids, 1997, 11, 7-12.	10.7	3
272	Measurements and dimensional scaling of spontaneous imbibition of inkjet droplets on paper. Nordic Pulp and Paper Research Journal, 2016, 31, 156-169.	0.7	3
273	Thermoresponsive Pentablock Copolymer on Silica: Temperature Effects on Adsorption, Surface Forces, and Friction. Langmuir, 2019, 35, 653-661.	3.5	3
274	Local Wear of Catechol-Containing Diblock Copolymer Layers: Wear Volume, Stick–Slip, and Nanomechanical Changes. Journal of Physical Chemistry C, 2021, 125, 21277-21292.	3.1	2
275	Propofol adsorption at the air/water interface: a combined vibrational sum frequency spectroscopy, nuclear magnetic resonance and neutron reflectometry study. Soft Matter, 2019, 15, 38-46.	2.7	1
276	Surface Force Measurement. Interactions between Interfaces Coated with Block Copolymers Hyomen Kagaku, 1997, 18, 610-617.	0.0	1
277	Recent progress in surface forces: Application to complex systems, biology, and wetting. Current Opinion in Colloid and Interface Science, 2020, 47, A1-A2.	7.4	1
278	Phospholipids and Hyaluronan: From Molecular Interactions to Nano- and Macroscale Friction. Colloids and Interfaces, 2022, 6, 38.	2.1	1
279	Mechanical Properties of Organic Electronic Polymers on the Nanoscale (Adv. Electron. Mater.) Tj ETQq1 1 0.784	314 rgBT /	Oyerlock 10