Richard J Mead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3931120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the Precision in Measuring Glutathione at <scp>3 T</scp> With a <scp>MEGAâ€PRESS</scp> Sequence in Primary Motor Cortex and Occipital Cortex. Journal of Magnetic Resonance Imaging, 2022, 55, 435-442.	3.4	2
2	Caudal–Rostral Progression of Alpha Motoneuron Degeneration in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Antioxidants, 2022, 11, 983.	5.1	1
3	Fiber optic Raman spectroscopy for the evaluation of disease state in Duchenne muscular dystrophy: An assessment using the <i>mdx</i> model and human muscle. Muscle and Nerve, 2022, 66, 362-369.	2.2	4
4	<i>In Vivo</i> Fiber Optic Raman Spectroscopy of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and Duchenne Muscular Dystrophy. ACS Chemical Neuroscience, 2021, 12, 1768-1776.	3.5	12
5	Adipose-derived stem cells protect motor neurons and reduce glial activation in both inÂvitro and inÂvivo models of ALS. Molecular Therapy - Methods and Clinical Development, 2021, 21, 413-433.	4.1	11
6	Proteomic Approaches to Study Cysteine Oxidation: Applications in Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2021, 14, 678837.	2.9	10
7	The GLP-1 receptor agonist, liraglutide, fails to slow disease progression in SOD1G93A and TDP-43Q331K transgenic mouse models of ALS. Scientific Reports, 2021, 11, 17027.	3.3	5
8	Extensive phenotypic characterisation of a human TDP-43Q331KÂtransgenic mouse model of amyotrophic lateral sclerosis (ALS). Scientific Reports, 2021, 11, 16659.	3.3	12
9	NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radical Biology and Medicine, 2021, 173, 125-141.	2.9	21
10	Confocal Endomicroscopy of Neuromuscular Junctions Stained with Physiologically Inert Protein Fragments of Tetanus Toxin. Biomolecules, 2021, 11, 1499.	4.0	0
11	Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nature Reviews Neurology, 2020, 16, 440-456.	10.1	257
12	Female sex mitigates motor and behavioural phenotypes in TDP-43Q331K knock-in mice. Scientific Reports, 2020, 10, 19220.	3.3	9
13	Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathologica Communications, 2019, 7, 166.	5.2	60
14	TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nature Neuroscience, 2018, 21, 552-563.	14.8	181
15	Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2017, 12, 85.	10.8	51
16	Early Detection of Motor Dysfunction in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis (ALS) Using Home Cage Running Wheels. PLoS ONE, 2014, 9, e107918.	2.5	16
17	S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2013, 61, 438-452.	2.9	54
18	Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS). PLoS ONE, 2011, 6, e23244.	2.5	80

RICHARD J MEAD

#	Article	IF	CITATIONS
19	Systemic Delivery of scAAV9 Expressing SMN Prolongs Survival in a Model of Spinal Muscular Atrophy. Science Translational Medicine, 2010, 2, 35ra42.	12.4	246
20	Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 38-45.	2.1	293
21	An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radical Biology and Medicine, 2009, 46, 1127-1138.	2.9	86
22	Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 1051-1067.	3.8	382
23	Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselen. Brain, 2006, 129, 1693-1709.	7.6	57
24	Deficiency of the complement regulator CD59a enhances disease severity, demyelination and axonal injury in murine acute experimental allergic encephalomyelitis. Laboratory Investigation, 2004, 84, 21-28.	3.7	82
25	The Membrane Attack Complex of Complement Causes Severe Demyelination Associated with Acute Axonal Injury. Journal of Immunology, 2002, 168, 458-465.	0.8	183
26	Rat T cells express neither CD55 nor CD59 and are dependent on Crry for protection from homologous complement. European Journal of Immunology, 2002, 32, 502-509.	2.9	4
27	Molecular cloning, expression and characterization of the rat analogue of human membrane cofactor protein (MCP/CD46). Immunology, 1999, 98, 137-143.	4.4	45
28	Mannose-binding lectin alleles in a prospectively recruited UK population. Lancet, The, 1997, 349, 1669-1670.	13.7	47