Alexander Khoruts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3930306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oral lyophilised microbiota for the treatment of ulcerative colitis. The Lancet Gastroenterology and Hepatology, 2022, 7, 108-109.	3.7	1
2	Microbial Therapeutics in Liver Disease. , 2022, , 271-285.		1
3	Lasting shift in the gut microbiota in patients with acute myeloid leukemia. Blood Advances, 2022, 6, 3451-3457.	2.5	10
4	Pre-Transplant Fecal Microbiome Characteristics Are Associated with Subsequent Development of Chronic Graft-Versus-Host Disease. Transplantation and Cellular Therapy, 2022, 28, S57-S58.	0.6	0
5	Differential hydrogen sulfide production by a human cohort in response to animal- and plant-based diet interventions. Clinical Nutrition, 2022, 41, 1153-1162.	2.3	4
6	Protective Effect of Intestinal <i>Blautia</i> Against Neutropenic Fever in Allogeneic Transplant Recipients. Clinical Infectious Diseases, 2022, 75, 1912-1920.	2.9	5
7	Loss of microbiota-derived protective metabolites after neutropenic fever. Scientific Reports, 2022, 12, 6244.	1.6	4
8	Reduced Enterohepatic Recirculation of Mycophenolate and Lower Blood Concentrations Are Associated with the Stool Bacterial Microbiome after Hematopoietic Cell Transplantation. Transplantation and Cellular Therapy, 2022, 28, 372.e1-372.e9.	0.6	12
9	Boosting corrects a memory B cell defect in SARS-CoV-2 mRNA–vaccinated patients with inflammatory bowel disease. JCI Insight, 2022, 7, .	2.3	5
10	A dose-finding safety and feasibility study of oral activated charcoal and its effects on the gut microbiota in healthy volunteers not receiving antibiotics. PLoS ONE, 2022, 17, e0269986.	1.1	2
11	Fecal Microbiota Transplantation Is Safe and Effective in Patients With Clostridioides difficile Infection and Cirrhosis. Clinical Gastroenterology and Hepatology, 2021, 19, 1627-1634.	2.4	24
12	Shotgun sequencing of the faecal microbiome to predict response to steroids in patients with lower gastrointestinal acute graftâ€ <i>versus</i> â€host disease: An exploratory analysis. British Journal of Haematology, 2021, 192, e69-e73.	1.2	3
13	Probiotics and the Microbiome—How Can We Help Patients Make Sense of Probiotics?. Gastroenterology, 2021, 160, 614-623.	0.6	16
14	Fecal Microbiota Transplant in Cirrhosis Reduces Gut Microbial Antibiotic Resistance Genes: Analysis of Two Trials. Hepatology Communications, 2021, 5, 258-271.	2.0	41
15	Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 67-80.	8.2	91
16	Structural modifications that increase gut restriction of bile acid derivatives. RSC Medicinal Chemistry, 2021, 12, 394-405.	1.7	3
17	Effect of COVID-19 precautions on the gut microbiota and nosocomial infections. Gut Microbes, 2021, 13, 1-10.	4.3	10
18	Lower endoscopic delivery of freeze-dried intestinal microbiota results in more rapid and efficient engraftment than oral administration. Scientific Reports, 2021, 11, 4519.	1.6	5

#	Article	IF	CITATIONS
19	Fecal Microbiota Transplantation for Recurrent C difficile Infection During the COVID-19 Pandemic. Mayo Clinic Proceedings, 2021, 96, 1418-1425.	1.4	11
20	Psychological Features in the Inflammatory Bowel Disease–Irritable Bowel Syndrome Overlap: Developing a Preliminary Understanding of Cognitive and Behavioral Factors. Crohn's & Colitis 360, 2021, 3, .	0.5	1
21	Microbiotaâ€Driven Activation of Intrahepatic B Cells Aggravates NASH Through Innate and Adaptive Signaling. Hepatology, 2021, 74, 704-722.	3.6	95
22	High-affinity memory B cells induced by SARS-CoV-2 infection produce more plasmablasts and atypical memory B cells than those primed by mRNA vaccines. Cell Reports, 2021, 37, 109823.	2.9	73
23	Altered microbiota-host metabolic cross talk preceding neutropenic fever in patients with acute leukemia. Blood Advances, 2021, 5, 3937-3950.	2.5	12
24	Can FMT Cause or Prevent CRC? Maybe, But There Is More to Consider. Gastroenterology, 2021, 161, 1103-1105.	0.6	5
25	Gut microbiota response to antibiotics is personalized and depends on baseline microbiota. Microbiome, 2021, 9, 211.	4.9	32
26	Multiple bacterial virulence factors focused on adherence and biofilm formation associate with outcomes in cirrhosis. Gut Microbes, 2021, 13, 1993584.	4.3	5
27	Intermittent Fasting Enhances Right Ventricular Function in Preclinical Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2021, 10, e022722.	1.6	18
28	Circulating Metabolomics Suggest Neutropenic Fever As a Metabolic Derangement Related to Intestinal Tissue Damage and Gut Dysbiosis. Blood, 2021, 138, 688-688.	0.6	0
29	Inactivation of Clostridioides Difficile Spores in Carpeting and Upholstery to Reduce Disease Recurrence in Households and Nursing Care Facilities. Journal of Public Health Issues and Practices, 2021, 5, .	0.2	0
30	Cost-effectiveness of Treatment Regimens for Clostridioides difficile Infection: An Evaluation of the 2018 Infectious Diseases Society of America Guidelines. Clinical Infectious Diseases, 2020, 70, 754-762.	2.9	42
31	Specific gut microbiota changes heralding bloodstream infection and neutropenic fever during intensive chemotherapy. Leukemia, 2020, 34, 312-316.	3.3	30
32	Gut dysbiosis during antileukemia chemotherapy versus allogeneic hematopoietic cell transplantation. Cancer, 2020, 126, 1434-1447.	2.0	30
33	Levaquin Gets a Pass. Biology of Blood and Marrow Transplantation, 2020, 26, 778-781.	2.0	11
34	Convenient Protocol for Production and Purification of Clostridioides difficile Spores for Germination Studies. STAR Protocols, 2020, 1, 100071.	0.5	3
35	Peri-operative antibiotics acutely and significantly impact intestinal microbiota following bariatric surgery. Scientific Reports, 2020, 10, 20340.	1.6	9
36	Methanogen Abundance Thresholds Capable of Differentiating In Vitro Methane Production in Human Stool Samples. Digestive Diseases and Sciences, 2020, 66, 3822-3830.	1.1	3

#	Article	IF	CITATIONS
37	Circulating bacterial DNA and neutropenic fever during antiâ€leukaemia chemotherapy. British Journal of Haematology, 2020, 191, e55-e58.	1.2	0
38	A Replicating Single-Cycle Adenovirus Vaccine Effective against Clostridium difficile. Vaccines, 2020, 8, 470.	2.1	5
39	Probiotics: Promise, Evidence, and Hope. Gastroenterology, 2020, 159, 409-413.	0.6	10
40	Reply to: " â€~You know my name, but not my story' – Deciding on an accurate nomenclature for faecal microbiota transplantation― Journal of Hepatology, 2020, 72, 1213-1214.	1.8	2
41	Sensing of ATP via the Purinergic Receptor P2RX7 Promotes CD8+ Trm Cell Generation by Enhancing Their Sensitivity to the Cytokine TGF-β. Immunity, 2020, 53, 158-171.e6.	6.6	66
42	Microbiome swings with repeated insults. British Journal of Haematology, 2020, 189, e94-e96.	1.2	3
43	Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Medicine, 2020, 12, 12.	3.6	73
44	Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. Journal of Hepatology, 2020, 72, 1003-1027.	1.8	123
45	Plasma Short Chain Fatty Acids As a Predictor of Response to Therapy for Life-Threatening Acute Graft-Versus-Host Disease. Blood, 2020, 136, 14-14.	0.6	2
46	Fecal Microbiota Transplantation: Current Status in Treatment of GI and Liver Disease. Clinical Gastroenterology and Hepatology, 2019, 17, 353-361.	2.4	50
47	Microbial Exposure Enhances Immunity to Pathogens Recognized by TLR2 but Increases Susceptibility to Cytokine Storm through TLR4 Sensitization. Cell Reports, 2019, 28, 1729-1743.e5.	2.9	74
48	Case report of synchronous post-lung transplant colon cancers in the era of colorectal cancer screening recommendations in cystic fibrosis: screening "too early―before it's too late. BMC Gastroenterology, 2019, 19, 137.	0.8	4
49	Durable Long-Term Bacterial Engraftment following Encapsulated Fecal Microbiota Transplantation To Treat Clostridium difficile Infection. MBio, 2019, 10, .	1.8	58
50	7-Methylation of Chenodeoxycholic Acid Derivatives Yields a Substantial Increase in TGR5 Receptor Potency. Journal of Medicinal Chemistry, 2019, 62, 6824-6830.	2.9	18
51	Vancomycin-resistance gene cluster, vanC, in the gut microbiome of acute leukemia patients undergoing intensive chemotherapy. PLoS ONE, 2019, 14, e0223890.	1.1	8
52	Microbiota transplant therapy and autism: lessons for the clinic. Expert Review of Gastroenterology and Hepatology, 2019, 13, 1033-1037.	1.4	24
53	Fecal Microbiota Transplant: A Rose by Any Other Name. American Journal of Gastroenterology, 2019, 114, 1176-1176.	0.2	13
54	Letter to the Editor. Clinical Infectious Diseases, 2019, 69, 2232-2233.	2.9	1

#	Article	IF	CITATIONS
55	Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension?. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1093-H1101.	1.5	26
56	RNA Sequencing of Intestinal Biopsies Expands the T Cell-Centric Paradigm of Steroid-Refractory Acute Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2019, 25, S295.	2.0	0
57	Dysbiosis patterns during re-induction/salvage versus induction chemotherapy for acute leukemia. Scientific Reports, 2019, 9, 6083.	1.6	32
58	Dietary Factors in Sulfur Metabolism and Pathogenesis of Ulcerative Colitis. Nutrients, 2019, 11, 931.	1.7	35
59	Influence of short-term changes in dietary sulfur on the relative abundances of intestinal sulfate-reducing bacteria. Gut Microbes, 2019, 10, 447-457.	4.3	34
60	Outpatient-to-Inpatient Transition Causes Marked Dysbiosis in Allogeneic Hematopoietic Cell Transplantation Recipients. Biology of Blood and Marrow Transplantation, 2019, 25, S47.	2.0	1
61	A pilot study of fecal bile acid and microbiota profiles in inflammatory bowel disease and primary sclerosing cholangitis. Clinical and Experimental Gastroenterology, 2019, Volume 12, 9-19.	1.0	58
62	Gut Dysbiosis Increases Gut Barrier Damage during Anti-Leukemia Chemotherapy: Implications for Acute Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2019, 25, S142-S143.	2.0	0
63	The Impact of Regulatory Policies on the Future of Fecal Microbiota Transplantation. Journal of Law, Medicine and Ethics, 2019, 47, 482-504.	0.4	15
64	Amphiregulin in intestinal acute graft-versus-host disease: a possible diagnostic and prognostic aid. Modern Pathology, 2019, 32, 560-567.	2.9	10
65	Pre-transplant recovery of microbiome diversity without recovery of the original microbiome. Bone Marrow Transplantation, 2019, 54, 1115-1117.	1.3	13
66	Antibiotic-induced Disruption of Intestinal Microbiota Contributes to Failure of Vertical Sleeve Gastrectomy. Annals of Surgery, 2019, 269, 1092-1100.	2.1	29
67	Stress responses, M2 macrophages, and a distinct microbial signature in fatal intestinal acute graft-versus-host disease. JCl Insight, 2019, 4, .	2.3	18
68	Pre-Transplant Serum Claudin-3 Predicts Intestinal Graft-Versus-Host Disease and Non-Relapse Mortality Risk after Allogeneic Hematopoietic Cell Transplantation. Blood, 2019, 134, 39-39.	0.6	0
69	Is fecal microbiota transplantation a temporary patch for treatment of <i>Clostridium difficile</i> infection or a new frontier of therapeutics?. Expert Review of Gastroenterology and Hepatology, 2018, 12, 435-438.	1.4	7
70	Strain Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation. Cell Host and Microbe, 2018, 23, 229-240.e5.	5.1	292
71	Cystic Fibrosis Colorectal Cancer Screening Consensus Recommendations. Gastroenterology, 2018, 154, 736-745.e14.	0.6	131
72	Functional Genomics of Host–Microbiome Interactions in Humans. Trends in Genetics, 2018, 34, 30-40.	2.9	73

#	Article	IF	CITATIONS
73	Low Amphiregulin Expression in Intestinal Biopsies of Patients with Acute Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2018, 24, S188.	2.0	3
74	Clinician Guide to Microbiome Testing. Digestive Diseases and Sciences, 2018, 63, 3167-3177.	1.1	22
75	Targeting the microbiome: from probiotics to fecal microbiota transplantation. Genome Medicine, 2018, 10, 80.	3.6	35
76	Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome, 2018, 6, 166.	4.9	73
77	Reply. Gastroenterology, 2018, 154, 2283-2284.	0.6	Ο
78	Pretransplant Serum Citrulline Predicts Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2018, 24, 2190-2196.	2.0	10
79	CLOUD: a non-parametric detection test for microbiome outliers. Microbiome, 2018, 6, 137.	4.9	16
80	Gastrointestinal cancers in patients with cystic fibrosis. Lancet Oncology, The, 2018, 19, e368.	5.1	5
81	Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genetics, 2018, 14, e1007376.	1.5	65
82	Elevated AREG/EGF Ratio Prior to Transplantation Is Associated with Pre-Transplant Clostridium Difficile Infection, Unresolved Tissue Damage, and Poorer Overall Survival. Blood, 2018, 132, 3353-3353.	0.6	1
83	Treatment of recurrent Clostridium difficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease. Gut Microbes, 2017, 8, 303-309.	4.3	64
84	Sleeve gastrectomy drives persistent shifts in the gut microbiome. Surgery for Obesity and Related Diseases, 2017, 13, 916-924.	1.0	43
85	Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 2017, 5, 10.	4.9	901
86	Community dynamics drive punctuated engraftment of the fecal microbiome following transplantation using freeze-dried, encapsulated fecal microbiota. Gut Microbes, 2017, 8, 276-288.	4.3	39
87	Infection Followed by Graft-versus-Host Disease: Pathogenic Role of Antibiotics. Biology of Blood and Marrow Transplantation, 2017, 23, 1038-1039.	2.0	4
88	Successful Resolution of Recurrent Clostridium difficile Infection using Freeze-Dried, Encapsulated Fecal Microbiota; Pragmatic Cohort Study. American Journal of Gastroenterology, 2017, 112, 940-947.	0.2	164
89	Fecal microbiota transplantation–early steps on a long journey ahead. Gut Microbes, 2017, 8, 199-204.	4.3	7
90	Synthesis and Biological Evaluation of Bile Acid Analogues Inhibitory to <i>Clostridium difficile</i> Spore Germination. Journal of Medicinal Chemistry, 2017, 60, 3451-3471.	2.9	35

#	Article	IF	CITATIONS
91	Treatment of Recurrent Clostridium Difficile Infection using Fecal Microbiota Transplantation in Patients with Inflammatory Bowel Disease. Gastroenterology, 2017, 152, S343.	0.6	1
92	Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome, 2017, 5, 55.	4.9	118
93	Successful Resolution of Recurrent Clostridium Difficile Infection using Freeze-Dried, Encapsulated Fecal Microbiota. Gastroenterology, 2017, 152, S343-S344.	0.6	2
94	Gut-sparing treatment of urinary tract infection in patients at high risk of <i>Clostridium difficile</i> infection. Journal of Antimicrobial Chemotherapy, 2017, 72, 522-528.	1.3	18
95	Analysis of gut microbiota – An ever changing landscape. Gut Microbes, 2017, 8, 268-275.	4.3	25
96	Defining total-body AIDS-virus burden with implications for curative strategies. Nature Medicine, 2017, 23, 1271-1276.	15.2	322
97	Postoperative Disruption of Intestinal Microbiota Composition Attenuates the Metabolic Efficacy of Vertical Sleeve Gastrectomy. Journal of the American College of Surgeons, 2017, 225, S17.	0.2	0
98	Therapeutic Strategies for Severe and Severe-Complicated Clostridium Difficile Infection. Gastroenterology, 2017, 152, S1304.	0.6	1
99	Consensus Recommendations for Colorectal Cancer Screening in Adults with Cystic Fibrosis. Gastroenterology, 2017, 152, S544.	0.6	3
100	Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. Archives of Medical Research, 2017, 48, 766-773.	1.5	37
101	Toward revision of antimicrobial therapies in hematopoietic stem cell transplantation: target the pathogens, but protect the indigenous microbiota. Translational Research, 2017, 179, 116-125.	2.2	16
102	Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied Microbiology and Biotechnology, 2017, 101, 47-64.	1.7	387
103	Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome, 2017, 5, 87.	4.9	138
104	Identification of pâ€cresol sulfate and secondary bile salts in human urine as sensitive biomarkers of fecal microbiota transplantation in Râ€CDI patients. FASEB Journal, 2017, 31, 315.1.	0.2	0
105	Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. PLoS ONE, 2016, 11, e0147210.	1.1	130
106	Complete Microbiota Engraftment Is Not Essential for Recovery from Recurrent Clostridium difficile Infection following Fecal Microbiota Transplantation. MBio, 2016, 7, .	1.8	97
107	The Vertical Sleeve Gastrectomy is Responsible for Dominant Shifts in Gut Microbiota. Surgery for Obesity and Related Diseases, 2016, 12, S9-S10.	1.0	0
108	Mo1290 Treatment of Urinary Tract Infections Without Affecting the Gut Microbiota in Patients With Recurrent Clostridium difficile Infection. Gastroenterology, 2016, 150, S689.	0.6	0

#	Article	IF	CITATIONS
109	Mo1966 The Gut Microbiome Shifts Acutely and Independently From Hypocaloric Restriction Following the Vertical Sleeve Gastrectomy. Gastroenterology, 2016, 150, S1246.	0.6	0
110	Colonoscopic screening shows increased early incidence and progression of adenomas in cystic fibrosis. Journal of Cystic Fibrosis, 2016, 15, 548-553.	0.3	53
111	Environmental Contamination in Households of Patients with Recurrent Clostridium difficile Infection. Applied and Environmental Microbiology, 2016, 82, 2686-2692.	1.4	33
112	Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent <i>Clostridium difficile</i> Infection. Annals of Internal Medicine, 2016, 165, 609.	2.0	486
113	Faecal microbiota transplantation is promising but not a panacea. Nature Microbiology, 2016, 1, 16015.	5.9	24
114	Preoperative Antibiotics Drive Short-Term Changes in the Gut Microbiome after Vertical Sleeve Gastrectomy. Journal of the American College of Surgeons, 2016, 223, S17.	0.2	0
115	Ursodeoxycholic Acid Inhibits Clostridium difficile Spore Germination and Vegetative Growth, and Prevents the Recurrence of Ileal Pouchitis Associated With the Infection. Journal of Clinical Gastroenterology, 2016, 50, 624-630.	1.1	93
116	Understanding the mechanisms of faecal microbiota transplantation. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 508-516.	8.2	377
117	Su1743 Characterization of Fecal Microbiota in Response to Heterologous Versus Autologous (Placebo) Fecal Microbial Transplantation: Results From a Dual-Center, Randomized, Placebo-Controlled Trial. Gastroenterology, 2016, 150, S542.	0.6	0
118	First microbial encounters. Nature Medicine, 2016, 22, 231-232.	15.2	7
119	Inflammatory Bowel Disease Affects the Outcome of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Clinical Gastroenterology and Hepatology, 2016, 14, 1433-1438.	2.4	190
120	Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1126-34.	3.3	252
121	Lymphoid Fibrosis Occurs in Long-Term Nonprogressors and Persists With Antiretroviral Therapy but May Be Reversible With Curative Interventions. Journal of Infectious Diseases, 2015, 211, 1068-1075.	1.9	49
122	Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome, 2015, 3, 10.	4.9	218
123	Mast Cell Activation Disease and Microbiotic Interactions. Clinical Therapeutics, 2015, 37, 941-953.	1.1	19
124	Development of Fecal Microbiota Transplantation Suitable for Mainstream Medicine. Clinical Gastroenterology and Hepatology, 2015, 13, 246-250.	2.4	46
125	Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2307-2312.	3.3	579
126	Introduction to special issue on microbiome influences on host immunity. Immunology Letters, 2014, 162, 1-2.	1.1	0

#	Article	IF	CITATIONS
127	Early Colon Screening of Adult Patients With Cystic Fibrosis Reveals High Incidence of Adenomatous Colon Polyps. Journal of Clinical Gastroenterology, 2014, 48, e85-e88.	1.1	40
128	From Stool Transplants to Next-Generation Microbiota Therapeutics. Gastroenterology, 2014, 146, 1573-1582.	0.6	168
129	Microbiota transplantation restores normal fecal bile acid composition in recurrent <i>Clostridium difficile</i> infection. American Journal of Physiology - Renal Physiology, 2014, 306, G310-G319.	1.6	341
130	Developing human gut microbiota as a class of therapeutics. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 79-80.	8.2	15
131	Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2013. Microbiome, 2014, 2,	4.9	25
132	Species and genus level resolution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation. Microbiome, 2014, 2, 13.	4.9	98
133	Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology. Immunology Letters, 2014, 162, 77-81.	1.1	38
134	Fecal Microbiota Transplant for Treatment of Clostridium difficile Infection in Immunocompromised Patients. American Journal of Gastroenterology, 2014, 109, 1065-1071.	0.2	546
135	Guidance on Preparing an Investigational New Drug Application for Fecal Microbiota Transplantation Studies. Clinical Gastroenterology and Hepatology, 2014, 12, 283-288.	2.4	61
136	Fecal Microbiota Transplantation: An Interview with Alexander Khoruts. Global Advances in Health and Medicine, 2014, 3, 73-80.	0.7	3
137	Esophageal Cancer in Patients With Cystic Fibrosis. American Journal of Gastroenterology, 2014, 109, S241-S242.	0.2	1
138	Resolution of Severe Clostridium difficile Infection Following Sequential Fecal Microbiota Transplantation. Journal of Clinical Gastroenterology, 2013, 47, 735-737.	1.1	80
139	High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes, 2013, 4, 125-135.	4.3	262
140	Fecal Microbiota Transplantation (FMT) for Treatment of Clostridium difficile Infection (CDI) in Immunocompromised Patients: ACG Governors Award for Excellence in Clinical Research. American Journal of Gastroenterology, 2013, 108, S179-S180.	0.2	4
141	Fecal microbiota transplantation and emerging applications. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 88-96.	8.2	552
142	Standardized Frozen Preparation for Transplantation of Fecal Microbiota for Recurrent Clostridium difficile Infection. American Journal of Gastroenterology, 2012, 107, 761-767.	0.2	583
143	Treating Clostridium difficile Infection With Fecal Microbiota Transplantation. Clinical Gastroenterology and Hepatology, 2011, 9, 1044-1049.	2.4	823
144	Therapeutic transplantation of the distal gut microbiota. Mucosal Immunology, 2011, 4, 4-7.	2.7	75

#	Article	IF	CITATIONS
145	How Painful is a Community Screening or Surveillance Colonoscopy?. American Journal of Gastroenterology, 2011, 106, S520-S521.	0.2	0
146	Changes in the Composition of the Human Fecal Microbiome After Bacteriotherapy for Recurrent Clostridium difficile-associated Diarrhea. Journal of Clinical Gastroenterology, 2010, 44, 354-360.	1.1	595
147	Induction of TGF-β1 and TGF-β1–dependent predominant Th17 differentiation by group A streptococcal infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5937-5942.	3.3	93
148	CD4+CD25+Foxp3+ Regulatory T Cells Optimize Diversity of the Conventional T Cell Repertoire during Reconstitution from Lymphopenia. Journal of Immunology, 2010, 184, 4749-4760.	0.4	34
149	Regulatory CD4+CD25+Foxp3+ T Cells Selectively Inhibit the Spontaneous Form of Lymphopenia-Induced Proliferation of Naive T Cells. Journal of Immunology, 2008, 180, 7305-7317.	0.4	66
150	De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. Journal of Leukocyte Biology, 2008, 83, 1230-1239.	1.5	107
151	High frequencies of polyfunctional HIV-specific T cells are associated with preservation of mucosal CD4 T cells in bronchoalveolar lavage. Mucosal Immunology, 2008, 1, 49-58.	2.7	73
152	Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood, 2008, 112, 2826-2835.	0.6	562
153	MHC class II deprivation impairs CD4 T cell motility and responsiveness to antigen-bearing dendritic cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7181-7186.	3.3	63
154	Naive and Memory CD4+ T Cell Survival Controlled by Clonal Abundance. Science, 2006, 312, 114-116.	6.0	316
155	A causal link between lymphopenia and autoimmunity. Immunology Letters, 2005, 98, 23-31.	1.1	116
156	A model of suppression of the antigen-specific CD4 T cell response by regulatory CD25+CD4 T cells in vivo. International Immunology, 2005, 17, 335-342.	1.8	6
157	A Role for CD28 in Lymphopenia-Induced Proliferation of CD4 T Cells. Journal of Immunology, 2004, 173, 3909-3915.	0.4	55
158	CD4+ T Cell Depletion during all Stages of HIV Disease Occurs Predominantly in the Gastrointestinal Tract. Journal of Experimental Medicine, 2004, 200, 749-759.	4.2	1,561
159	IL-1 acts on antigen-presenting cells to enhance thein vivo proliferation of antigen-stimulated naive CD4 T cells via a CD28-dependent mechanism that does not involve increased expression of CD28 ligands. European Journal of Immunology, 2004, 34, 1085-1090.	1.6	34
160	Competition for self ligands restrains homeostatic proliferation of naive CD4 T cells. Proceedings of the United States of America, 2003, 100, 1185-1190.	3.3	109
161	INVIVOACTIVATION OFANTIGEN-SPECIFICCD4 T CELLS. Annual Review of Immunology, 2001, 19, 23-45.	9.5	463
162	Visualizing the generation of memory CD4 T cells in the whole body. Nature, 2001, 410, 101-105.	13.7	963

#	Article	IF	CITATIONS
163	Antagonistic Roles for CTLA-4 and the Mammalian Target of Rapamycin in the Regulation of Clonal Anergy: Enhanced Cell Cycle Progression Promotes Recall Antigen Responsiveness. Journal of Immunology, 2001, 167, 5636-5644.	0.4	78
164	Generation of Anergic and Potentially Immunoregulatory CD25+CD4 T Cells In Vivo After Induction of Peripheral Tolerance with Intravenous or Oral Antigen. Journal of Immunology, 2001, 167, 188-195.	0.4	396
165	Homeostatic Expansion Occurs Independently of Costimulatory Signals. Journal of Immunology, 2001, 167, 5664-5668.	0.4	114
166	Antigen-Experienced CD4 T Cells Display a Reduced Capacity for Clonal Expansion In Vivo That Is Imposed by Factors Present in the Immune Host. Journal of Immunology, 2000, 164, 4551-4557.	0.4	59
167	CTLA-4 Blockade Reverses CD8+ T Cell Tolerance to Tumor by a CD4+ T Cell– and IL-2-Dependent Mechanism. Immunity, 1999, 11, 483-493.	6.6	282
168	A Natural Immunological Adjuvant Enhances T Cell Clonal Expansion through a CD28-dependent, Interleukin (IL)-2–independent Mechanism. Journal of Experimental Medicine, 1998, 187, 225-236.	4.2	206
169	In Vivo Detection of Dendritic Cell Antigen Presentation to CD4+ T Cells. Journal of Experimental Medicine, 1997, 185, 2133-2141.	4.2	510
170	Use of adoptive transfer of T-cell antigen-receptor-transgenic T cells for the study of T-cell activation in vivo. Immunological Reviews, 1997, 156, 67-78.	2.8	191