Gonzalo Sanchez Duffhues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3930181/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of small macrocyclic kinase inhibitors. Future Medicinal Chemistry, 2022, 14, 389-391.	2.3	3
2	Increased Bone Morphogenetic Protein 10 Activity Is Associated with Increased Right Atrial Wall Stress and Disease Severity in Pulmonary Hypertension. , 2022, , .		0
3	TGF-β-mediated Endothelial to Mesenchymal Transition (EndMT) and the Functional Assessment of EndMT Effectors using CRISPR/Cas9 Gene Editing. Journal of Visualized Experiments, 2021, , .	0.3	5
4	TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Frontiers in Cell and Developmental Biology, 2021, 9, 616610.	3.7	18
5	Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines, 2021, 9, 213.	3.2	8
6	Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell, 2021, 28, 653-670.e11.	11.1	31
7	Inhibiting Endothelial Cell Function in Normal and Tumor Angiogenesis Using BMP Type I Receptor Macrocyclic Kinase Inhibitors. Cancers, 2021, 13, 2951.	3.7	4
8	Cripto favors chondrocyte hypertrophy via <scp>TGF</scp> â€i² <scp>SMAD1</scp> /5 signaling during development of osteoarthritis. Journal of Pathology, 2021, 255, 330-342.	4.5	11
9	Fibrodysplasia Ossificans Progressiva: What Have We Achieved and Where Are We Now? Follow-up to the 2015 Lorentz Workshop. Frontiers in Endocrinology, 2021, 12, 732728.	3.5	15
10	Activin A and ALK4 Identified as Novel Regulators of Epithelial to Mesenchymal Transition (EMT) in Human Epicardial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 765007.	3.7	0
11	Exacerbated inflammatory signaling underlies aberrant response to BMP9 in pulmonary arterial hypertension lung endothelial cells. Angiogenesis, 2020, 23, 699-714.	7.2	22
12	TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Frontiers in Cell and Developmental Biology, 2020, 8, 260.	3.7	133
13	Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors. Bone, 2020, 138, 115472.	2.9	65
14	Mutant ACVR1 Arrests Glial Cell Differentiation to Drive Tumorigenesis in Pediatric Gliomas. Cancer Cell, 2020, 37, 308-323.e12.	16.8	56
15	The therapeutic potential of targeting the endothelial-to-mesenchymal transition. Angiogenesis, 2019, 22, 3-13.	7.2	77
16	Endothelial Colony Forming Cells as an Autologous Model to Study Endothelial Dysfunction in Patients with a Bicuspid Aortic Valve. International Journal of Molecular Sciences, 2019, 20, 3251.	4.1	6
17	Generation of Fibrodysplasia ossificans progressiva and control integration free iPSC lines from periodontal ligament fibroblasts. Stem Cell Research, 2019, 41, 101639.	0.7	7
18	Development of Macrocycle Kinase Inhibitors for ALK2 Using Fibrodysplasia Ossificans Progressivaâ€Derived Endothelial Cells. JBMR Plus, 2019, 3, e10230.	2.7	26

#	Article	IF	CITATIONS
19	Inflammation induces endothelialâ€ŧoâ€mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. Journal of Pathology, 2019, 247, 333-346.	4.5	123
20	Bone morphogenetic protein receptor signal transduction in human disease. Journal of Pathology, 2019, 247, 9-20.	4.5	151
21	Endothelialâ€ŧoâ€mesenchymal transition in cardiovascular diseases: Developmental signaling pathways gone awry. Developmental Dynamics, 2018, 247, 492-508.	1.8	120
22	P177Inflammation-induced EndMT facilitates BMP-9-mediated vascular calcification in a BMP type II receptor (BMPR2) dependent manner. Cardiovascular Research, 2018, 114, S47-S47.	3.8	0
23	TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. International Journal of Molecular Sciences, 2017, 18, 2157.	4.1	249
24	Involvement of inflammation and its related microRNAs in hepatocellular carcinoma. Oncotarget, 2017, 8, 22145-22165.	1.8	34
25	In Brief: Endothelialâ€ŧoâ€mesenchymal transition. Journal of Pathology, 2016, 238, 378-380.	4.5	57
26	Emerging regulators of BMP bioavailability. Bone, 2016, 93, 220-221.	2.9	1
27	Towards a cure for Fibrodysplasia ossificans progressiva. Annals of Translational Medicine, 2016, 4, S28-S28.	1.7	10
28	Signal Transduction: Gain of Activin Turns Muscle into Bone. Current Biology, 2015, 25, R1136-R1138.	3.9	3
29	Osteochondromas in fibrodysplasia ossificans progressiva: a widespread trait with a streaking but overlooked appearance when arising at femoral bone end. Rheumatology International, 2015, 35, 1759-1767.	3.0	17
30	Bone morphogenetic protein signaling in bone homeostasis. Bone, 2015, 80, 43-59.	2.9	163
31	SLUG Is Expressed in Endothelial Cells Lacking Primary Cilia to Promote Cellular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 616-627.	2.4	44
32	Clinical Utility Gene Card for: Fibrodysplasia ossificans progressiva. European Journal of Human Genetics, 2015, 23, 1431-1431.	2.8	18
33	Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovascular Research, 2015, 108, 278-287.	3.8	73
34	ls "Fibrodysplasia Ossificans Progressiva―a Vascular Disease? A Groundbreaking Pathogenic Model. ReumatologÃa ClÃnica (English Edition), 2014, 10, 389-395.	0.3	3
35	¿Es la «fibrodisplasia osificante progresiva» una enfermedad de origen vascular? Un modelo patogénico innovador. ReumatologÃa ClÃnica, 2014, 10, 389-395.	0.5	4
36	Dissecting the Pharmacophore of Curcumin. Which Structural Element Is Critical for Which Action?. Journal of Natural Products, 2013, 76, 1105-1112.	3.0	46

#	Article	IF	CITATIONS
37	Antisense-Oligonucleotide Mediated Exon Skipping in Activin-Receptor-Like Kinase 2: Inhibiting the Receptor That Is Overactive in Fibrodysplasia Ossificans Progressiva. PLoS ONE, 2013, 8, e69096.	2.5	30
38	Processed coffee alleviates DSS-induced colitis in mice. Functional Foods in Health and Disease, 2013, 3, 133.	0.6	0
39	Combination of Biological Screening in a Cellular Model of Viral Latency and Virtual Screening Identifies Novel Compounds That Reactivate HIV-1. Journal of Virology, 2012, 86, 3795-3808.	3.4	28
40	BMP signaling in vascular diseases. FEBS Letters, 2012, 586, 1993-2002.	2.8	236
41	Activation of Latent HIV-1 Expression by Protein Kinase C Agonists. A Novel Therapeutic Approach to Eradicate HIV-1 Reservoirs. Current Drug Targets, 2011, 12, 348-356.	2.1	38
42	Bryostatin-1 Synergizes with Histone Deacetylase Inhibitors to Reactivate HIV-1 from Latency. Current HIV Research, 2010, 8, 418-429.	0.5	107
43	Effects of diterpenes from latex of Euphorbia lactea and Euphorbia laurifolia on human immunodeficiency virus type 1 reactivation. Phytochemistry, 2010, 71, 243-248.	2.9	44
44	Denbinobin inhibits nuclear factor-κB and induces apoptosis via reactive oxygen species generation in human leukemic cells. Biochemical Pharmacology, 2009, 77, 1401-1409.	4.4	62
45	Differential effects of phorbol-13-monoesters on human immunodeficiency virus reactivation. Biochemical Pharmacology, 2008, 75, 1370-1380.	4.4	71
46	Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-κB-dependent pathway. Biochemical Pharmacology, 2008, 76, 1240-1250.	4.4	37
47	HIV-1-Tat potentiates CXCL12/Stromal Cell-Derived Factor 1-induced downregulation of membrane CXCR4 in T lymphocytes through Protein kinase C zeta. Molecular Immunology, 2008, 46, 106-115.	2.2	5
48	The 73ÂkDa Subunit of the CPSF Complex Binds to the HIV-1 LTR Promoter and Functions as a Negative Regulatory Factor that Is Inhibited by the HIV-1 Tat Protein. Journal of Molecular Biology, 2007, 372, 317-330.	4.2	6
49	A Meroterpenoid NF-κB Inhibitor and Drimane Sesquiterpenoids from Asafetida. Journal of Natural Products, 2006, 69, 1101-1104.	3.0	47