
Benjamin Petre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3929874/publications.pdf Version: 2024-02-01

RENIAMIN DETDE

#	Article	IF	CITATIONS
1	The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.	4.2	695
2	LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports, 2017, 7, 44598.	3.3	340
3	How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells?. PLoS Biology, 2014, 12, e1001801.	5.6	232
4	An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. ELife, 2016, 5, .	6.0	189
5	Candidate Effector Proteins of the Rust Pathogen <i>Melampsora larici-populina</i> Target Diverse Plant Cell Compartments. Molecular Plant-Microbe Interactions, 2015, 28, 689-700.	2.6	172
6	A Comprehensive Analysis of Genes Encoding Small Secreted Proteins Identifies Candidate Effectors in <i>Melampsora larici-populina</i> (Poplar Leaf Rust). Molecular Plant-Microbe Interactions, 2012, 25, 279-293.	2.6	150
7	Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150459.	4.0	114
8	Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar. BMC Plant Biology, 2011, 11, 33.	3.6	111
9	Effector proteins of rust fungi. Frontiers in Plant Science, 2014, 5, 416.	3.6	110
10	Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE, 2016, 11, e0149035.	2.5	99
11	Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cellular Microbiology, 2016, 18, 453-465.	2.1	90
12	Nine things to know about elicitins. New Phytologist, 2016, 212, 888-895.	7.3	84
13	Infection assays in <i>Arabidopsis</i> reveal candidate effectors from the poplar rust fungus that promote susceptibility to bacteria and oomycete pathogens. Molecular Plant Pathology, 2018, 19, 191-200.	4.2	84
14	Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS ONE, 2015, 10, e0137071.	2.5	78
15	The Poplar-Poplar Rust Interaction: Insights from Genomics and Transcriptomics. Journal of Pathogens, 2011, 2011, 1-11.	1.4	66
16	RNA-Seq of Early-Infected Poplar Leaves by the Rust Pathogen Melampsora larici-populina Uncovers PtSultr3;5, a Fungal-Induced Host Sulfate Transporter. PLoS ONE, 2012, 7, e44408.	2.5	57
17	Show me the way: rust effector targets in heterologous plant systems. Current Opinion in Microbiology, 2018, 46, 19-25.	5.1	49
18	Host-interactor screens of <i>Phytophthora infestans</i> RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell, 2021, 33, 1447-1471.	6.6	46

Benjamin Petre

#	Article	IF	CITATIONS
19	The Rust Fungus <i>Melampsora larici-populina</i> Expresses a Conserved Genetic Program and Distinct Sets of Secreted Protein Genes During Infection of Its Two Host Plants, Larch and Poplar. Molecular Plant-Microbe Interactions, 2018, 31, 695-706.	2.6	42
20	A rust fungal effector binds plant DNA and modulates transcription. Scientific Reports, 2018, 8, 14718.	3.3	42
21	The poplar Phi class glutathione transferase: expression, activity and structure of GSTF1. Frontiers in Plant Science, 2014, 5, 712.	3.6	33
22	Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor. Frontiers in Plant Science, 2014, 5, 111.	3.6	30
23	Host Adaptation and Virulence in Heteroecious Rust Fungi. Annual Review of Phytopathology, 2021, 59, 403-422.	7.8	30
24	Host-specialized transcriptome of plant-associated organisms. Current Opinion in Plant Biology, 2020, 56, 81-88.	7.1	26
25	Structural genomics applied to the rust fungus Melampsora larici-populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds. Scientific Reports, 2019, 9, 18084.	3.3	19
26	The Poplar Rust-Induced Secreted Protein (RISP) Inhibits the Growth of the Leaf Rust Pathogen Melampsora larici-populina and Triggers Cell Culture Alkalinisation. Frontiers in Plant Science, 2016, 7, 97.	3.6	11
27	Protein–Protein Interaction Assays with Effector–GFP Fusions in Nicotiana benthamiana. Methods in Molecular Biology, 2017, 1659, 85-98.	0.9	8
28	Toward the Discovery of Host-Defense Peptides in Plants. Frontiers in Immunology, 2020, 11, 1825.	4.8	8
29	2000-2019: Twenty Years of Highly Influential Publications in Molecular Plant Immunity. Molecular Plant-Microbe Interactions, 2022, 35, 748-754.	2.6	3
30	A Short Review of Anti-Rust Fungi Peptides: Diversity and Bioassays. Frontiers in Agronomy, 0, 4, .	3.3	1