List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3929437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Domino Palladium-Catalyzed C–C and C–O Bonds Formation via Dual O–H Bond Activation: Synthesis of 6,6-Dialkyl-6 <i>H</i> -benzo[<i>c</i>]chromenes. Organic Letters, 2012, 14, 628-631.	4.6	89
2	Formation of pentacyclic structures by a domino sequence on cyclic enamides. Chemical Communications, 2009, , 1571.	4.1	88
3	Palladium-Catalyzed Environmentally Benign Acylation. Journal of Organic Chemistry, 2016, 81, 6409-6423.	3.2	72
4	Substitution Controlled Functionalization of <i>ortho</i> -Bromobenzylic Alcohols via Palladium Catalysis: Synthesis of Chromenes and Indenols. Journal of Organic Chemistry, 2014, 79, 2059-2074.	3.2	52
5	Domino Oxidative [Pd]-Catalysis: One-Pot Synthesis of Fluorenones Starting from Simple Benzylamines and Iodo Arenes. Organic Letters, 2015, 17, 5894-5897.	4.6	51
6	Microwave assisted domino heck cyclization and alkynylation: synthesis of alkyne substituted dihydrobenzofurans. Green Chemistry, 2018, 20, 369-374.	9.0	48
7	Palladium-Catalyzed Acylations: One-Pot Synthesis of Indenones. Journal of Organic Chemistry, 2017, 82, 372-381.	3.2	43
8	Lewis acid promoted dual bond formation: facile synthesis of dihydrocoumarins and spiro-tetracyclic dihydrocoumarins. Organic and Biomolecular Chemistry, 2014, 12, 4347-4360.	2.8	41
9	Domino [Pd]-Catalysis: One-Pot Synthesis of Isobenzofuran-1(3 <i>H</i>)-ones. Journal of Organic Chemistry, 2016, 81, 7685-7691.	3.2	41
10	Domino One-Pot Process for the Synthesis of Isobenzofuran-1(3 <i>H</i>)-ones via [Cu]-Catalysis Using Water as the Green Solvent. Journal of Organic Chemistry, 2015, 80, 7089-7098.	3.2	39
11	[Cu]-Catalyzed Domino Sonogashira Coupling Followed by Intramolecular 5-exo-dig Cyclization: Synthesis of 1,3-Dihydro-2-benzofurans. Journal of Organic Chemistry, 2014, 79, 8566-8576.	3.2	38
12	Metal-Free Domino One-Pot Decarboxylative Cyclization of Cinnamic Acid Esters: Synthesis of Functionalized Indanes. Journal of Organic Chemistry, 2016, 81, 12212-12222.	3.2	36
13	Bimetallic Pd–Au/TiO ₂ Nanoparticles: An Efficient and Sustainable Heterogeneous Catalyst for Rapid Catalytic Hydrogen Transfer Reduction of Nitroarenes. ACS Omega, 2018, 3, 13065-13072.	3.5	36
14	A simple efficient sequential one-pot intermolecular aza-Michael addition and intramolecular Buchwald–Hartwig α-arylation of amines: synthesis of functionalized tetrahydroisoquinolines. Tetrahedron, 2012, 68, 8003-8010.	1.9	30
15	Oxidative annulations triggered by a simple Lewis acid: facile synthesis of benzofurans. Organic Chemistry Frontiers, 2017, 4, 972-977.	4.5	28
16	A Domino Palladium-Catalyzed Cyclization: One-Pot Synthesis of 4b-Alkyl-10-phenyl-4b,5-dihydroindeno[2,1- <i>a</i>]indenes via Carbopalladation Followed by C–H Activation. Journal of Organic Chemistry, 2017, 82, 4254-4264.	3.2	28
17	Microwaveâ€Assisted Domino Palladium Catalysis in Water: A Diverse Synthesis of 3,3′â€Disubstituted Heterocyclic Compounds. European Journal of Organic Chemistry, 2018, 2018, 2171-2177.	2.4	27
18	KO <i>t</i> Buâ€Mediated Domino Isomerization and Functionalization of Aromatic Allylic Alcohols. European Journal of Organic Chemistry, 2017, 2017, 3886-3895.	2.4	24

#	Article	IF	CITATIONS
19	An efficient intermolecular [Pd]-catalyzed C–C and intramolecular [Cu]-catalyzed C–O bonds formation: synthesis of functionalized flavans and benzoxepine. Tetrahedron Letters, 2012, 53, 3861-3864.	1.4	23
20	An Approach to Oneâ€Pot Regioselective Synthesis of Indenones through Palladium atalyzed Annulation in Water. European Journal of Organic Chemistry, 2018, 2018, 4135-4146.	2.4	23
21	Photocatalytic hydrogenation of nitroarenes: supporting effect of CoO _x on TiO ₂ nanoparticles. New Journal of Chemistry, 2019, 43, 748-754.	2.8	22
22	An efficient sequential one-pot base mediated C–O and Pd-mediated C–C bond formation: synthesis of functionalized cinnamates and isochromenes. Tetrahedron Letters, 2012, 53, 5635-5640.	1.4	21
23	A Domino Palladium Catalysis: Synthesis of 7-Methyl-5H-dibenzo[a,c][7] annulen-5-ones. Synlett, 2013, 24, 967-972.	1.8	21
24	Nanoâ€sized Recyclable PdO Supported Carbon Nanostructures for Heck Reaction: Influence of Carbon Materials. ChemistrySelect, 2017, 2, 2700-2707.	1.5	21
25	Biaryl Formation from 5-(2-Bromobenzyl)-Substituted Piperidin-2-ones via Palladacycles. Organic Letters, 2008, 10, 2361-2364.	4.6	19
26	Formation of bi-aryls via a domino palladium catalysis. Tetrahedron Letters, 2014, 55, 861-864.	1.4	19
27	Recyclable Pd/CuFe ₂ O ₄ nanowires: a highly active catalyst for C–C couplings and synthesis of benzofuran derivatives. RSC Advances, 2018, 8, 21030-21039.	3.6	19
28	Sequential one-pot approach for the synthesis of functionalized phthalans via Heck-reduction–cyclization (HRC) reactions. RSC Advances, 2015, 5, 26749-26761.	3.6	18
29	Fabrication of Pd/CuFe ₂ O ₄ hybrid nanowires: a heterogeneous catalyst for Heck couplings. New Journal of Chemistry, 2018, 42, 1646-1654.	2.8	18
30	Zincâ€Chlorideâ€Promoted Domino Reaction of Phenols with Terminal Alkynes under Solventâ€Free Conditions: An Efficient Synthesis of Chromenes. European Journal of Organic Chemistry, 2018, 2018, 2846-2857.	2.4	17
31	Palladium-Catalyzed Aerobic Oxidative Coupling of <i>ortho</i> -(Alkynyl)styrenes with Allylic Alcohols via 6- <i>endo-dig</i> Cyclization: Regioselective Construction of Polysubstituted Naphthalenes. Journal of Organic Chemistry, 2019, 84, 12856-12870.	3.2	17
32	[Pd] atalyzed Intermolecular Coupling and Acid Mediated Intramolecular Cyclodehydration: Oneâ€Pot Synthesis of Indenes. European Journal of Organic Chemistry, 2018, 2018, 971-979.	2.4	15
33	Recent Advances Towards the Synthesis of Dihydrobenzofurans and Dihydroisobenzofurans. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	15
34	One-pot Jeffery-Heck and Reduction Sequence: Synthesis of Alcohols and Applied to the Synthesis of Flavan Natural Products. ChemistrySelect, 2016, 1, 1151-1155.	1.5	13
35	One-pot C–C/C–O bond formation: synthesis of spirocyclic lactones. RSC Advances, 2016, 6, 837-843.	3.6	12
36	Domino [Pd]-Catalysis: Heck followed by decarboxylative Sonogashira couplings under microwave irradiation in aqueous medium. Journal of Organometallic Chemistry, 2019, 890, 58-71.	1.8	12

#	Article	IF	CITATIONS
37	A simple Lewis acid induced reaction of phenols with electrophiles: Synthesis of functionalized 4H-chromenes and ortho-benzylphenols. Synthetic Communications, 2020, 50, 112-122.	2.1	12
38	Recent advances on the synthesis of flavans, isoflavans, and neoflavans. Journal of Heterocyclic Chemistry, 2021, 58, 415-441.	2.6	12
39	A simple removable aliphatic nitrile template 2-cyano-2,2-di-isobutyl acetic acid for remote <i>meta</i> -selective C–H functionalization. Organic Chemistry Frontiers, 2021, 8, 1959-1969.	4.5	12
40	Palladium-Catalyzed Distal <i>m</i> -C–H Functionalization of Arylacetic Acid Derivatives. Organic Letters, 2021, 23, 7353-7358.	4.6	11
41	1,2,3,4â€Tetrahydroisoquinolines as inhibitors of <scp>HIV</scp> â€1 integrase and human <scp>LEDGF</scp> /p75 interaction. Chemical Biology and Drug Design, 2018, 91, 1133-1140.	3.2	10
42	Palladium-Catalyzed Direct Acylation: One-Pot Relay Synthesis of Anthraquinones. Synthesis, 2019, 51, 769-779.	2.3	10
43	Organic transformations catalyzed by palladium nanoparticles on carbon nanomaterials. Journal of Chemical Sciences, 2018, 130, 1.	1.5	9
44	Microwaveâ€Assisted Domino Heck Cyclization and Phosphorylation: Synthesis of Phosphorus Containing Heterocycles. European Journal of Organic Chemistry, 2019, 2019, 3856-3866.	2.4	9
45	Novel ultra-small Pd NPs on SOS spheres: a new catalyst for domino intramolecular Heck and intermolecular Sonogashira couplings. RSC Advances, 2020, 10, 4568-4578.	3.6	9
46	Palladium Nanoparticles on Silica Nanospheres for Switchable Reductive Coupling of Nitroarenes. Catalysis Letters, 2020, 150, 2309-2321.	2.6	9
47	Copper catalyzed coupling of protecting group free and sterically hindered 2-bromobenzyl tertiary alcohols with phenols and anilines: facile synthesis of xanthenes and dihydroacridines. RSC Advances, 2016, 6, 20588-20597.	3.6	8
48	Lewis Acid Catalyzed Dual Bond Formation: Oneâ€Pot Synthesis of Indenes. ChemistrySelect, 2018, 3, 289-293.	1.5	8
49	[Cu]-catalyzed direct coupling of dibromoalkenes: Synthesis of symmetrical 1,3-diynes and triazoles. Synthetic Communications, 2017, 47, 1151-1158.	2.1	7
50	Oneâ€Pot Heck and Reduction: Application towards Efficient Synthesis of Flavans Promoted by Lewis Acid. ChemistrySelect, 2017, 2, 10809-10813.	1.5	7
51	Palladiumâ€Catalyzed Direct Oxidative Coupling of Iodoarenes with Primary Alcohols Leading to Ketones: Application to the Synthesis of Benzofuranones and Indenones. European Journal of Organic Chemistry, 2019, 2019, 4832-4843.	2.4	7
52	Recyclable Aliphatic Nitrile-Template Enabled Remote <i>meta</i> -C–H Functionalization at Room Temperature. Journal of Organic Chemistry, 2022, 87, 2204-2221.	3.2	7
53	Palladium-Catalyzed Copper-Free Sonogashira Coupling of 2-Bromoarylcarbonyls: Synthesis of Isobenzofurans via One-Pot Reductive Cyclization. Synthesis, 2017, 49, 5149-5158.	2.3	6
54	Palladiumâ€Catalyzed Hydroxy Group Directed Regioselective Monoâ€arylation of 2â€Hydroxybiphenyls to 2â€Hydroxy to <i>ortho</i> â€Terphenyls. European Journal of Organic Chemistry, 2019, 2019, 2472-2480.	2.4	6

#	Article	IF	CITATIONS
55	Time and Temperature Dependent Palladium-Catalyzed Stereo- and Regioselective Alkoxy-arylation of Triple Bonds: Synthesis of (<i>E</i>)/(<i>Z</i>)-1,1-Disubstituted-3-(1-Phenylalkylidene)-1,3-dihydroisobenzofurans. Journal of Organic Chemistry, 2021, 86, 8182-8196.	3.2	6
56	Palladium Catalyzed Direct Acylation of Iodoâ€Acetanilides/Iodoâ€Phenyl Acetates: Domino Oneâ€Pot Synthesis of 2â€Quinolinones. European Journal of Organic Chemistry, 2018, 2018, 957-970.	2.4	5
57	Microwave-assisted intramolecular reductive Heck in aqueous medium: Synthesis of 3,3′-Disubstituted heterocyclic compounds. Journal of Organometallic Chemistry, 2019, 902, 120963.	1.8	5
58	Palladium mediated domino reaction: synthesis of isochromenes under aqueous medium. RSC Advances, 2020, 10, 338-349.	3.6	5
59	Propargyl alcohols as alkyne sources: Synthesis of heterocyclic compounds under microwave irradiation. Journal of Organometallic Chemistry, 2020, 922, 121350.	1.8	5
60	A Metal-Free Path to 2-Iodo-3-alkyl-1-arylbut-2-en-1-ones and Their Application to the Domino Synthesis of Functionalized 2 <i>H</i> -Pyran-2-ones. Journal of Organic Chemistry, 2022, 87, 2222-2240.	3.2	5
61	Palladium Catalysis: Oneâ€Pot Synthesis of Fluorenones. ChemistrySelect, 2018, 3, 7867-7870.	1.5	4
62	Nickel catalyzed intramolecular oxidative coupling: synthesis of 3-aryl benzofurans. RSC Advances, 2020, 10, 22264-22272.	3.6	4
63	Dual Câ€C Bond Forming Heck and Sonogashira Couplings Followed by Hydroarylation: Synthesis of Tricyclic Frameworks. ChemistrySelect, 2020, 5, 2430-2434.	1.5	4
64	[Pd]-Catalyzed <i>para</i> -selective allylation of phenols: access to 4-[(<i>E</i>)-3-aryl/alkylprop-2-enyl]phenols. Organic and Biomolecular Chemistry, 2021, 19, 8259-8263.	2.8	4
65	Intermolecular Sonogashira Coupling and Intramolecular 5- <i>Exo</i> - <i>dig</i> Cycloisomerization Cascade: A One-Pot Pathway for Accessing (3-Benzylbenzofuran-2-yl)(phenyl)methanones. Journal of Organic Chemistry, 2022, 87, 10158-10172.	3.2	4
66	Palladium-Catalysed Coupling and Acid-Mediated Cyclisation: Synthesis of Fluorenones and Fluorenes. SynOpen, 2018, 02, 0268-0275.	1.7	3
67	Heterogeneous Direct Acylation Strategy to Diaryl Ketones and Their Application to 1, 3â€Dihydroisobenzofurans. ChemistrySelect, 2020, 5, 1349-1352.	1.5	3
68	Microwaveâ€Assisted Condensation of Benzylic Alcohols and Alkynes Promoted by Zinc Halides: Concise Access to Alkenyl Halides. European Journal of Organic Chemistry, 2021, 2021, 4851-4860.	2.4	2
69	Switching of support materials for the hydrogenation of nitroarenes: A review. Catalysis Reviews - Science and Engineering, 2024, 66, 259-342.	12.9	2
70	Copper atalyzed Chemoselective 1,4â€Reductions: Sequential Oneâ€Pot Synthesis of Esters. ChemistrySelect, 2019, 4, 12111-12116.	1.5	1
71	Singleâ€Columnâ€Based Heck Coupling, Condensation and Alkylation Strategy: Synthesis of 2â€Benzoylâ€2â€alkylâ€2,3â€dihydroâ€1 <i>H</i> â€indenâ€1â€ones. ChemistrySelect, 2021, 6, 13041-13045.	1.5	1
72	Transitionâ€Metal Catalyzed Stereoselective γâ€Arylation and Friedelâ€Crafts Alkylation: A Concise Synthesis of Indenes. European Journal of Organic Chemistry, 2020, 2020, 3235-3242.	2.4	0