Marcel A T M Van Vugt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3928975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Discovery of In Vivo Phosphorylation Networks. Cell, 2007, 129, 1415-1426.	13.5	702
2	Polo-like Kinase-1 Controls Recovery from a G2 DNA Damage-Induced Arrest in Mammalian Cells. Molecular Cell, 2004, 15, 799-811.	4.5	336
3	Gene expression analysis identifies global gene dosage sensitivity in cancer. Nature Genetics, 2015, 47, 115-125.	9.4	313
4	Relevance of Tumor-Infiltrating Immune Cell Composition and Functionality for Disease Outcome in Breast Cancer. Journal of the National Cancer Institute, 2017, 109, djw192.	3.0	296
5	Getting in and out of mitosis with Polo-like kinase-1. Oncogene, 2005, 24, 2844-2859.	2.6	258
6	Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell, 2018, 33, 1078-1093.e12.	7.7	238
7	14-3-3 if controls mitotic translation to facilitate cytokinesis. Nature, 2007, 446, 329-332.	13.7	217
8	DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated RNA Stabilization. Molecular Cell, 2010, 40, 34-49.	4.5	210
9	A Mitotic Phosphorylation Feedback Network Connects Cdk1, Plk1, 53BP1, and Chk2 to Inactivate the G2/M DNA Damage Checkpoint. PLoS Biology, 2010, 8, e1000287.	2.6	201
10	Polo-like Kinase-1 Is Required for Bipolar Spindle Formation but Is Dispensable for Anaphase Promoting Complex/Cdc20 Activation and Initiation of Cytokinesis. Journal of Biological Chemistry, 2004, 279, 36841-36854.	1.6	173
11	cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature, 2022, 607, 366-373.	13.7	132
12	Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes and Development, 2010, 24, 1377-1388.	2.7	107
13	RIF1 promotes replication fork protection and efficient restart to maintain genome stability. Nature Communications, 2019, 10, 3287.	5.8	91
14	BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nature Communications, 2019, 10, 100.	5.8	91
15	The DNA damage response during mitosis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 750, 45-55.	0.4	85
16	Progression through mitosis promotes PARP inhibitor-induced cytotoxicity in homologous recombination-deficient cancer cells. Nature Communications, 2017, 8, 15981.	5.8	83
17	Functional Dynamics of Polo-Like Kinase 1 at the Centrosome. Molecular and Cellular Biology, 2009, 29, 3134-3150.	1.1	82
18	Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treatment Reviews, 2020, 88, 102054.	3.4	76

#	Article	IF	CITATIONS
19	Rif1 Is Required for Resolution of Ultrafine DNA Bridges in Anaphase to Ensure Genomic Stability. Developmental Cell, 2015, 34, 466-474.	3.1	74
20	CLIP-170 facilitates the formation of kinetochore–microtubule attachments. EMBO Journal, 2006, 25, 45-57.	3.5	72
21	<scp>APC</scp> / <scp>C^C</scp> ^{dh1} controls Ct <scp>IP</scp> stability during the cell cycle and in response to <scp>DNA</scp> damage. EMBO Journal, 2014, 33, 2860-2879.	3.5	65
22	PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy, 2017, 13, 486-505.	4.3	63
23	Uncoupling Anaphase-Promoting Complex/Cyclosome Activity from Spindle Assembly Checkpoint Control by Deregulating Polo-Like Kinase 1. Molecular and Cellular Biology, 2005, 25, 2031-2044.	1.1	62
24	Restarting the Cell Cycle When the Checkpoint Comes to a Halt: Figure 1 Cancer Research, 2005, 65, 7037-7040.	0.4	62
25	Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibitionâ€mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2â€deficient cancer cells. Molecular Oncology, 2019, 13, 2422-2440.	2.1	62
26	Regulators of homologous recombination repair as novel targets for cancer treatment. Frontiers in Genetics, 2015, 6, 96.	1.1	58
27	Checkpoint Adaptation and Recovery: Back with Polo after the Break. Cell Cycle, 2004, 3, 1383-1386.	1.3	56
28	Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188661.	3.3	56
29	Breaking the DNA damage response to improve cervical cancer treatment. Cancer Treatment Reviews, 2016, 42, 30-40.	3.4	54
30	Transcriptional effects of copy number alterations in a large set of human cancers. Nature Communications, 2020, 11, 715.	5.8	53
31	Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions. Drug Resistance Updates, 2016, 24, 55-69.	6.5	52
32	A haploid genetic screen identifies the G ₁ /S regulatory machinery as a determinant of Wee1 inhibitor sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15160-15165.	3.3	50
33	TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells. Oncogene, 2019, 38, 852-867.	2.6	43
34	Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Research, 2021, 49, 4239-4257.	6.5	42
35	Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nature Cell Biology, 2021, 23, 608-619.	4.6	41
36	Claspin: Timing the Cell Cycle Arrest When the Genome is Damaged. Cell Cycle, 2006, 5, 2831-2834.	1.3	39

MARCEL A T M VAN VUGT

#	Article	IF	CITATIONS
37	Functional validation of putative tumor suppressor gene <i>C13ORF18</i> in cervical cancer by Artificial Transcription Factors. Molecular Oncology, 2013, 7, 669-679.	2.1	39
38	miR-371a-3p, miR-373-3p and miR-367-3p as Serum Biomarkers in Metastatic Testicular Germ Cell Cancers Before, During and After Chemotherapy. Cells, 2019, 8, 1221.	1.8	39
39	Overexpression of Cyclin E1 or Cdc25A leads to replication stress, mitotic aberrancies, and increased sensitivity to replication checkpoint inhibitors. Oncogenesis, 2020, 9, 88.	2.1	37
40	The role of ATM and 53BP1 as predictive markers in cervical cancer. International Journal of Cancer, 2012, 131, 2056-2066.	2.3	35
41	CXCR4 inhibition enhances radiosensitivity, while inducing cancer cell mobilization in a prostate cancer mouse model. Clinical and Experimental Metastasis, 2014, 31, 829-839.	1.7	35
42	Therapeutic targeting and patient selection for cancers with homologous recombination defects. Expert Opinion on Drug Discovery, 2017, 12, 565-581.	2.5	32
43	Polo-Like Kinase-1 Controls Aurora A Destruction by Activating APC/C-Cdh1. PLoS ONE, 2009, 4, e5282.	1.1	30
44	Checkpoint kinase 2 (Chk2) supports sensitivity to platinum-based treatment in high grade serous ovarian cancer. Gynecologic Oncology, 2014, 133, 591-598.	0.6	28
45	Cyclin E expression is associated with high levels of replication stress in triple-negative breast cancer. Npj Breast Cancer, 2020, 6, 40.	2.3	27
46	When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends in Cancer, 2022, 8, 174-189.	3.8	27
47	Modeling of Cisplatin-Induced Signaling Dynamics in Triple-Negative Breast Cancer Cells Reveals Mediators of Sensitivity. Cell Reports, 2019, 28, 2345-2357.e5.	2.9	25
48	Cell cycle re-entry mechanisms after DNA damage checkpoints: Giving it some gas to shut off the breaks!. Cell Cycle, 2010, 9, 2097-2101.	1.3	21
49	Toward Molecular Imaging–Driven Drug Development in Oncology. Cancer Discovery, 2011, 1, 25-28.	7.7	21
50	Inflammatory signaling in genomically instable cancers. Cell Cycle, 2019, 18, 1830-1848.	1.3	21
51	Improving gene function predictions using independent transcriptional components. Nature Communications, 2021, 12, 1464.	5.8	20
52	Identification of relevant drugable targets in diffuse large B-cell lymphoma using a genome-wide unbiased CD20 guilt-by association approach. PLoS ONE, 2018, 13, e0193098.	1.1	20
53	Controlling the response to DNA damage by the APC/C-Cdh1. Cellular and Molecular Life Sciences, 2016, 73, 949-960.	2.4	19
54	Identification of Two Protein-Signaling States Delineating Transcriptionally Heterogeneous Human Medulloblastoma. Cell Reports, 2018, 22, 3206-3216.	2.9	19

#	Article	IF	CITATIONS
55	An mRNA expression-based signature for oncogene-induced replication-stress. Oncogene, 2022, 41, 1216-1224.	2.6	17
56	Replication stress: Driver and therapeutic target in genomically instable cancers. Advances in Protein Chemistry and Structural Biology, 2019, 115, 157-201.	1.0	15
57	CXCR4 and CXCL12 Expression in Rectal Tumors of Stage IV Patients Before and After Local Radiotherapy and Systemic Neoadjuvant Treatment. Current Pharmaceutical Design, 2015, 21, 2276-2283.	0.9	15
58	Comparison of Carboplatin With 5-Fluorouracil vs. Cisplatin as Concomitant Chemoradiotherapy for Locally Advanced Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 761.	1.3	14
59	The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genetics, 2021, 17, e1009868.	1.5	14
60	Nuclear COMMD1 Is Associated with Cisplatin Sensitivity in Ovarian Cancer. PLoS ONE, 2016, 11, e0165385.	1.1	13
61	Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine. Theranostics, 2017, 7, 2111-2133.	4.6	12
62	Perspectives for tailored chemoprevention and treatment of colorectal cancer in Lynch syndrome. Critical Reviews in Oncology/Hematology, 2011, 80, 264-277.	2.0	11
63	Quantitative proteomics analysis identifies MUC1 as an effect sensor of EGFR inhibition. Oncogene, 2019, 38, 1477-1488.	2.6	11
64	Dual mTORC1/2 Inhibition Sensitizes Testicular Cancer Models to Cisplatin Treatment. Molecular Cancer Therapeutics, 2020, 19, 590-601.	1.9	8
65	Shutting down the power supply for DNA repair in cancer cells. Journal of Cell Biology, 2017, 216, 295-297.	2.3	7
66	Polo-Like Kinase-1: Activity Measurement and RNAi-Mediated Knockdown. , 2005, 296, 355-370.		6
67	Never tear us a-PARP: Dealing with DNA lesions during mitosis. Molecular and Cellular Oncology, 2018, 5, e1382670.	0.3	6
68	Deposition Bias of Chromatin Proteins Inverts under DNA Replication Stress Conditions. ACS Chemical Biology, 2021, 16, 2193-2201.	1.6	6
69	Data-Driven prioritisation of antibody-drug conjugate targets in head and neck squamous cell carcinoma. Oral Oncology, 2018, 80, 33-39.	0.8	5
70	Establishment and characterisation of testicular cancer patient-derived xenograft models for preclinical evaluation of novel therapeutic strategies. Scientific Reports, 2020, 10, 18938.	1.6	4
71	The RECQL helicase prevents replication fork collapse during replication stress. Life Science Alliance, 2020, 3, e202000668.	1.3	4
72	Identification and Validation of Esophageal Squamous Cell Carcinoma Targets for Fluorescence Molecular Endoscopy. International Journal of Molecular Sciences, 2021, 22, 9270.	1.8	3

#	Article	IF	CITATIONS
73	Building a great wall around mitosis: Evolutionary conserved roles for the Greatwall/MASTL kinases in securing chromosome stability. Cell Cycle, 2010, 9, 3842-3847.	1.3	1
74	Editorial: Cancer-Associated Defects in the DNA Damage Response: Drivers for Malignant Transformation and Potential Therapeutic Targets. Frontiers in Genetics, 2015, 6, 355.	1.1	1
75	Plk1 Manages DNA break repair during mitosis. Cell Cycle, 2015, 14, 1356-1357.	1.3	1
76	A synthetic lethal screen identifies HDAC4 as a potential target in MELK overexpressing cancers. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	1
77	MBRS-36. IDENTIFICATION OF TWO PROTEIN-SIGNALING STATES DELINEATING TRANSCRIPTIONALLY HETEROGENEOUS HUMAN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i136-i136.	0.6	0
78	A large pooled analysis refines gene expression-based molecular subclasses in cutaneous melanoma. Oncolmmunology, 2019, 8, 1558664.	2.1	0