Stefan Schoenfelder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3928181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Locus-specific induction of gene expression from heterochromatin loci during cellular senescence. Nature Aging, 2022, 2, 31-45.	11.6	12
2	Highâ€ r esolution threeâ€dimensional chromatin profiling of the Chinese hamster ovary cell genome. Biotechnology and Bioengineering, 2021, 118, 784-796.	3.3	5
3	Widespread reorganisation of pluripotent factor binding and gene regulatory interactions between human pluripotent states. Nature Communications, 2021, 12, 2098.	12.8	30
4	Short- and long-range cis interactions between integrated HPV genomes and cellular chromatin dysregulate host gene expression in early cervical carcinogenesis. PLoS Pathogens, 2021, 17, e1009875.	4.7	18
5	Cis-Regulatory Control of Mammalian Sex Determination. Sexual Development, 2021, 15, 317-334.	2.0	6
6	Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence. Nature Communications, 2020, 11, 6049.	12.8	42
7	Cohesin-Dependent and -Independent Mechanisms Mediate Chromosomal Contacts between Promoters and Enhancers. Cell Reports, 2020, 32, 107929.	6.4	106
8	ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. ELife, 2020, 9, .	6.0	116
9	Long-range enhancer–promoter contacts in gene expression control. Nature Reviews Genetics, 2019, 20, 437-455.	16.3	735
10	Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition. Cell Reports, 2018, 22, 2615-2627.	6.4	99
11	Thrombopoietin signaling to chromatin elicits rapid and pervasive epigenome remodeling within poised chromatin architectures. Genome Research, 2018, 28, 295-309.	5.5	39
12	Divergent wiring of repressive and active chromatin interactions between mouse embryonic and trophoblast lineages. Nature Communications, 2018, 9, 4189.	12.8	51
13	Genome organization and chromatin analysis identify transcriptional downregulation of insulin-like growth factor signaling as a hallmark of aging in developing B cells. Genome Biology, 2018, 19, 126.	8.8	29
14	Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions. Journal of Visualized Experiments, 2018, , .	0.3	66
15	Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO Journal, 2017, 36, 3573-3599.	7.8	620
16	Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biology, 2017, 18, 125.	8.8	136
17	GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. PLoS ONE, 2017, 12, e0174744.	2.5	58
18	Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells. ELife, 2017, 6, .	6.0	130

STEFAN SCHOENFELDER

#	Article	IF	CITATIONS
19	Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Biology, 2016, 17, 212.	8.8	85
20	Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood stem/progenitor cell model. Blood, 2016, 127, e12-e23.	1.4	49
21	CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biology, 2016, 17, 127.	8.8	344
22	Identifying Causal Genes at the Multiple Sclerosis Associated Region 6q23 Using Capture Hi-C. PLoS ONE, 2016, 11, e0166923.	2.5	28
23	HiCUP: pipeline for mapping and processing Hi-C data. F1000Research, 2015, 4, 1310.	1.6	485
24	Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nature Communications, 2015, 6, 10069.	12.8	161
25	Global Reorganization of the Nuclear Landscape in Senescent Cells. Cell Reports, 2015, 10, 471-483.	6.4	282
26	Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nature Communications, 2015, 6, 6178.	12.8	186
27	The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Research, 2015, 25, 582-597.	5.5	402
28	Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nature Genetics, 2015, 47, 598-606.	21.4	857
29	Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biology, 2015, 16, 175.	8.8	157
30	Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nature Genetics, 2015, 47, 1179-1186.	21.4	330
31	Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Research, 2014, 24, 1854-1868.	5.5	219
32	Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013, 502, 59-64.	27.8	1,347
33	Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature Genetics, 2010, 42, 53-61.	21.4	652