Ha Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3927831/publications.pdf

Version: 2024-02-01

	1163117	1372567
3,054	8	10
citations	h-index	g-index
1.0	1.0	0.400
12	12	2438
docs citations	times ranked	citing authors
	3,054 citations 12 docs citations	3,054 8 citations h-index 12 12

#	Article	IF	CITATIONS
1	Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8619-8624.	7.1	1,365
2	Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition. PLoS Computational Biology, 2014, 10, e1003963.	3.2	668
3	Explicit information for category-orthogonal object properties increases along the ventral stream. Nature Neuroscience, 2016, 19, 613-622.	14.8	261
4	Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiology, 2021, 6, 624.	6.1	158
5	Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance. Journal of Neuroscience, 2015, 35, 13402-13418.	3.6	148
6	Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert. Circulation: Cardiovascular Imaging, 2019, 12, e009303.	2.6	110
7	Flickering Analysis of Erythrocyte Mechanical Properties: Dependence on Oxygenation Level, Cell Shape, and Hydration Level. Biophysical Journal, 2009, 97, 1606-1615.	0.5	79
8	Deep Learning–Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction: A Point-of-Care Solution. Circulation: Cardiovascular Imaging, 2021, 14, e012293.	2.6	32
9	Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex. ELife, $2021,10,10$	6.0	9
10	Computational similarities between visual and auditory cortex studied with convolutional neural networks, fMRI, and electrophysiology. Journal of Vision, 2015, 15, 1093.	0.3	3