Miguel Ardid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3927591/publications.pdf

Version: 2024-02-01

87888 49909 8,169 184 38 87 citations g-index h-index papers 188 188 188 11317 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA. European Physical Journal C, 2022, 82, 1.	3.9	27
2	Science with Neutrino Telescopes in Spain. Universe, 2022, 8, 89.	2.5	0
3	Search for magnetic monopoles with ten years of the ANTARES neutrino telescope. Journal of High Energy Astrophysics, 2022, 34, 1-8.	6.7	2
4	Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search. European Physical Journal C, 2022, 82, 1.	3.9	9
5	Search for solar atmospheric neutrinos with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 018.	5.4	1
6	Search for secluded dark matter towards the Galactic Centre with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 028.	5.4	3
7	Search for non-standard neutrino interactions with 10 years of ANTARES data. Journal of High Energy Physics, 2022, 2022, .	4.7	2
8	Nanobeacon: A time calibration device for the KM3NeT neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040, 167132.	1.6	5
9	USE OF SOUND RECORDINGS AND ANALYSIS FOR PHYSICS LAB PRACTICES., 2021, , .		O
10	ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 092.	5.4	5
11	ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis. Astrophysical Journal, 2021, 911, 48.	4.5	11
12	Measurement of the atmospheric $\hat{l}/2$ and $\hat{l}/2$ energy spectra with the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 816, 136228.	4.1	11
13	The KM3NeT potential for the next core-collapse supernova observation with neutrinos. European Physical Journal C, 2021, 81, 1.	3.9	21
14	Deep learning reconstruction in ANTARES. Journal of Instrumentation, 2021, 16, C09018.	1.2	5
15	Monte Carlo simulations for the ANTARES underwater neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 064-064.	5.4	13
16	Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope. Astrophysical Journal, 2021, 920, 50.	4.5	6
17	Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA. Journal of High Energy Physics, 2021, 2021, 1.	4.7	4
18	Model-independent search for neutrino sources with the ANTARES neutrino telescope. Astroparticle Physics, 2020, 114, 35-47.	4.3	2

#	Article	IF	CITATIONS
19	gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes. Computer Physics Communications, 2020, 256, 107477.	7.5	14
20	Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Physical Review D, 2020, 102 , .	4.7	31
21	Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling. Journal of Instrumentation, 2020, 15, P11027-P11027.	1.2	9
22	The Control Unit of the KM3NeT Data Acquisition System. Computer Physics Communications, 2020, 256, 107433.	7.5	8
23	Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO. European Physical Journal C, 2020, 80, 1.	3.9	6
24	Event reconstruction for KM3NeT/ORCA using convolutional neural networks. Journal of Instrumentation, 2020, 15, P10005-P10005.	1.2	15
25	Search for dark matter towards the Galactic Centre with 11 years of ANTARES data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 805, 135439.	4.1	26
26	Search for neutrino counterparts of gravitational-wave events detected by LIGO and Virgo during run O2 with the ANTARES telescope. European Physical Journal C, 2020, 80, 1.	3.9	9
27	Bragg Peak Localization with Piezoelectric Sensors for Proton Therapy Treatment. Sensors, 2020, 20, 2987.	3.8	4
28	Acoustic Bragg Peak Localization in Proton Therapy Treatment: Simulation Studies. Proceedings (mdpi), 2020, 42, 71.	0.2	0
29	Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. European Physical Journal C, 2020, 80, 1.	3.9	20
30	Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10Âyr of ANTARES data. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5614-5628.	4.4	19
31	Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope. Physical Review D, 2020, 102, .	4.7	4
32	ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. Astrophysical Journal, 2020, 892, 92.	4.5	25
33	Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data. Journal of High Energy Physics, 2019, 2019, 1.	4.7	16
34	ANTARES Neutrino Search for Time and Space Correlations with IceCube High-energy Neutrino Events. Astrophysical Journal, 2019, 879, 108.	4. 5	5
35	Dark matter search results from the complete exposure of the PICO-60 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub><mml:mrow><mml:msub><mml:mrow></mml:mrow></mml:msub></mml:mrow><td>o> <ឈាl:m b> <td>row52 mml:m nrow></td></td></mml:math>	o> < ឈា l:m b> <td>row52 mml:m nrow></td>	ro w52 mml:m nrow>
36	Data-driven modeling of electron recoil nucleation in PICO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">F</mml:mi><mml:mn>8</mml:mn></mml:msub></mml:math> bubble chambers. Physical Review D, 2019, 100, .	4.7	8

#	Article	IF	Citations
37	Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA. European Physical Journal C, 2019, 79, 1.	3.9	17
38	Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring. Sensors, 2019, 19, 1971.	3.8	8
39	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
40	Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astroparticle Physics, 2019, 111, 100-110.	4.3	71
41	A Compact Array Transducer for Full Calibration of Underwater Acoustic Detection Neutrino Telescopes., 2019,,.		0
42	Effects of the thermodynamic conditions on the acoustic signature of bubble nucleation in superheated liquids used in dark matter search experiments. European Physical Journal C, 2019, 79, 1.	3.9	5
43	A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data. Astrophysical Journal, 2019, 886, 98.	4.5	6
44	The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope. Monthly Notices of the Royal Astronomical Society, 2019, 482, 184-193.	4.4	8
45	The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1427-1446.	4.4	156
46	All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. Astrophysical Journal Letters, 2018, 853, L7.	8.3	41
47	STUDENTS' PERCEPTION OF AUTO-SCORED ONLINE EXAMS IN BLENDED ASSESSMENT: FEEDBACK FOR IMPROVEMENT. Educación XXI, 2018, 21, .	0.8	2
48	Acoustic Parametric Signal Generation for Underwater Communication. Sensors, 2018, 18, 2149.	3.8	5
49	Underwater Communication Using Acoustic Parametric Arrays. Proceedings (mdpi), 2018, 2, 139.	0.2	2
50	Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. Astrophysical Journal Letters, 2018, 868, L20.	8.3	64
51	The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope. European Physical Journal C, 2018, 78, 1006.	3.9	14
52	Long-term monitoring of the ANTARES optical module efficiencies using $\40 mathrm $\{K\}$ \$\$ 40 K decays in sea water. European Physical Journal C, 2018, 78, 1.	3.9	10
53	Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 2018, 13, P05035-P05035.	1.2	25
54	The Search for Neutrinos from TXS 0506+056 with the ANTARES Telescope. Astrophysical Journal Letters, 2018, 863, L30.	8. 3	24

#	Article	IF	Citations
55	Acoustic Location of Bragg Peak for Hadrontherapy Monitoring. Proceedings (mdpi), 2018, 4, .	0.2	1
56	A Compact Transmitter Array to Reproduce the Acoustic Signature of Neutrino in Water. Proceedings (mdpi), $2018, 4, .$	0.2	0
57	Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 019-019.	5.4	8
58	Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope. Scientific Reports, 2017, 7, 45517.	3.3	20
59	Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 769, 249-254.	4.1	52
60	Search for dark matter annihilation in the earth using the ANTARES neutrino telescope. Physics of the Dark Universe, 2017, 16, 41-48.	4.9	19
61	Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 010-010.	5.4	22
62	First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope. Physical Review D, 2017, 96, .	4.7	60
63	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
64	Search for high-energy neutrinos from bright GRBs with ANTARES. Monthly Notices of the Royal Astronomical Society, 2017, 469, 906-915.	4.4	27
65	New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Physical Review D, 2017, 96, .	4.7	33
66	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40
67	Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
68	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135
69	Dark Matter Search Results from the <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>PICO</mml:mi><mml:mtext>a^'</mml:mtext><mml:mn>60</mml:mn><mathvariant="normal">C</mathvariant="normal"></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow>F<mml:mn>8</mml:mn></mml:math>	> 7.18 1ml:mr	02√7 ≱< mm :r
70	Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope. European Physical Journal C, 2017, 77, 1.	3.9	8
71	An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope. European Physical Journal C, 2017, 77, 419.	3.9	11
72	Search for relativistic magnetic monopoles with five years of the ANTARES detector data. Journal of High Energy Physics, 2017, 2017, 1.	4.7	9

#	Article	IF	CITATIONS
73	All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the AntaresÂneutrino telescope. European Physical Journal C, 2017, 77, 1.	3.9	13
74	An Algorithm for the Reconstruction of Neutrino-induced Showers in the ANTARES Neutrino Telescope. Astronomical Journal, 2017, 154, 275.	4.7	14
7 5	Optimization of Dimensions of Cylindrical Piezoceramics as Radio-Clean Low Frequency Acoustic Sensors. Journal of Sensors, 2017, 2017, 1-8.	1.1	4
76	MOSCAB: a geyser-concept bubble chamber to be used in a dark matter search. European Physical Journal C, 2017, 77, 1.	3.9	6
77	Neutrinos from Cosmic Ray Interactions in the Sun as background for dark matter searches. , 2017, , .		2
78	Indirect detection of Dark Matter with the ANTARES Neutrino Telescope. EPJ Web of Conferences, 2016, 116, 04002.	0.3	0
79	Dark matter searches using superheated liquids. EPJ Web of Conferences, 2016, 121, 06007.	0.3	0
80	Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors. Sensors, 2016, 16, 860.	3.8	4
81	Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration. Sensors, 2016, 16, 1210.	3.8	9
82	A compact array calibrator to study the feasibility of acoustic neutrino detection. EPJ Web of Conferences, 2016, 116, 03001.	0.3	0
83	A method to stabilise the performance of negatively fed KM3NeT photomultipliers. Journal of Instrumentation, 2016, 11, P12014-P12014.	1.2	8
84	Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 084001.	3.6	512
85	Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 759, 69-74.	4.1	78
86	THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE ANTARES AND ICECUBE NEUTRINO TELESCOPES. Astrophysical Journal, 2016, 823, 65.	4.5	49
87	Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope. Astroparticle Physics, 2016, 78, 43-51.	4.3	5
88	MOSCAB: direct dark matter search using the geyser technique. Nuclear and Particle Physics Proceedings, 2016, 273-275, 2354-2356.	0.5	0
89	Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 143-148.	4.1	35
90	Dark matter search results from the PICO-60 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>าไ:กฬเฮพ><</td><td>mrnbsnn>3</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	าไ:กฬเฮพ><	mr nbs nn>3

6

#	Article	IF	CITATIONS
91	Improved dark matter search results from PICO-2L Run 2. Physical Review D, 2016, 93, .	4.7	89
92	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
93	Dark Matter Searches with the ANTARES Neutrino Telescope. Nuclear and Particle Physics Proceedings, 2016, 273-275, 378-382.	0.5	2
94	MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS. Astrophysical Journal Letters, 2016, 820, L24.	8.3	9
95	The prototype detection unit of the KM3NeT detector. European Physical Journal C, 2016, 76, 1.	3.9	32
96	A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 016-016.	5.4	26
97	Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO tower prototype. European Physical Journal C, 2016, 76, 1.	3.9	11
98	Optical and X-ray early follow-up of ANTARES neutrino alerts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 062-062.	5.4	21
99	STUDENTS' PERCEPTION OF SCREENCAST FOR PHYSICS LEARNING. , 2016, , .		0
100	COLLABORATIVE TEAMWORK. RELATIONSHIP BETWEEN STUDENT'S PERCEPTION AND ACADEMIC RESULTS. 2016, , .	,	0
101	Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 2015, 114, 231302.	7.8	133
102	Ultrasonic Transmitter for Positioning of the Large Underwater Neutrino Telescope KM3NeT. Physics Procedia, 2015, 63, 195-200.	1.2	3
103	Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 068-068.	5.4	30
104	PICASSO, COUPP and PICO - search for dark matter with bubble chambers. EPJ Web of Conferences, 2015, 95, 04020.	0.3	8
105	Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 014-014.	5.4	9
106	Online exams for blended assessment. Study of different application methodologies. Computers and Education, 2015, 81, 296-303.	8.3	39
107	Acoustic Signal Detection Through the Cross-Correlation Method in Experiments with Different Signal to Noise Ratio and Reverberation Conditions. Lecture Notes in Computer Science, 2015, , 66-79.	1.3	9
108	ANTARES constrains a blazar origin of two IceCube PeV neutrino events. Astronomy and Astrophysics, 2015, 576, L8.	5.1	15

#	Article	IF	CITATIONS
109	Deep sea tests of a prototype of the KM3NeT digital optical module. European Physical Journal C, 2014, 74, 1.	3.9	46
110	Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 001-001.	5 . 4	9
111	SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. Astrophysical Journal Letters, 2014, 786, L5.	8.3	88
112	A search for neutrino emission from the Fermi bubbles with the ANTARES telescope. European Physical Journal C, 2014, 74, 1.	3.9	25
113	A search for time dependent neutrino emission from microquasars with the ANTARES telescope. Journal of High Energy Astrophysics, 2014, 3-4, 9-17.	6.7	9
114	Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 017-017.	5.4	8
115	NEMO-SMO acoustic array: A deep-sea test of a novel acoustic positioning system for a km3-scale underwater neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 725, 207-210.	1.6	17
116	A compact acoustic calibrator for ultra-high energy neutrino detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 725, 219-222.	1.6	1
117	Measurement of the atmospheric $\hat{l}/2$ $\hat{l}/4$ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. European Physical Journal C, 2013, 73, 1.	3.9	51
118	Development of an acoustic transceiver for the KM3NeT positioning system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 725, 215-218.	1.6	3
119	Acoustic position calibration of the KM3NeT neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 718, 502-503.	1.6	2
120	Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles. Astroparticle Physics, 2013, 42, 7-14.	4.3	28
121	First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 032-032.	5 . 4	20
122	First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 006-006.	5 . 4	13
123	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
124	A versatile compact array calibrator for UHE neutrino acoustic detection., 2013,,.		1
125	Acoustic studies for alpha background rejection in dark matter bubble chamber detectors., 2013,,.		3
126	SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRS ARRIVAL DIRECTIONS. Astrophysical Journal, 2013, 774, 19.	4.5	12

#	Article	IF	CITATIONS
127	Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astronomy and Astrophysics, 2013, 559, A9.	5.1	57
128	Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. Journal of Instrumentation, 2013, 8, T03006-T03006.	1.2	15
129	Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface. PLoS ONE, 2013, 8, e67523.	2.5	58
130	Astroparticle Physics and Green Communication and Networking: A Symbiosis. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2013, , 92-101.	0.3	0
131	Acoustic Transmitters for Underwater Neutrino Telescopes. Sensors, 2012, 12, 4113-4132.	3.8	21
132	Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band. Sensors, 2012, 12, 4237-4264.	3.8	145
133	The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 2012, 7, T08002-T08002.	1.2	48
134	The sound emission board of the KM3NeT acoustic positioning system. Journal of Instrumentation, 2012, 7, C01001-C01001.	1.2	10
135	SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE. Astrophysical Journal, 2012, 760, 53.	4.5	104
136	Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 714, 224-230.	4.1	63
137	Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope. Astroparticle Physics, 2012, 36, 204-210.	4.3	19
138	The ANTARES telescope neutrino alert system. Astroparticle Physics, 2012, 35, 530-536.	4.3	39
139	Measurement of the group velocity of light in sea water at the ANTARES site. Astroparticle Physics, 2012, 35, 552-557.	4.3	4
140	Search for relativistic magnetic monopoles with the ANTARES neutrino telescope. Astroparticle Physics, 2012, 35, 634-640.	4.3	43
141	Design and first tests of an acoustic positioning and detection system for KM3NeT. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 662, S246-S248.	1.6	4
142	R&D studies for the development of a compact transmitter able to mimic the acoustic signature of a UHE neutrino interaction. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 662, S206-S209.	1.6	4
143	A method for detection of muon induced electromagnetic showers with the ANTARES detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 675, 56-62.	1.6	2
144	Study of the Optimum Frequency at 2.4GHz ISM Band for Underwater Wireless Ad Hoc Communications. Lecture Notes in Computer Science, 2012, , 260-273.	1.3	5

#	Article	IF	CITATIONS
145	Underwater Communications in Wireless Sensor Networks using WLAN at 2.4 GHz., 2011, , .		9
146	Development of a Compact Transmitter Array for the Acoustic Neutrino Detection Calibration. , 2011, , .		0
147	Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 875-884.	1.4	15
148	Message from the MARSS Workshop Chairs. , 2011, , .		0
149	FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE. Astrophysical Journal Letters, 2011, 743, L14.	8.3	43
150	ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 656, 11-38.	1.6	441
151	A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astroparticle Physics, 2011, 34, 652-662.	4.3	80
152	R&D towards the acoustic positioning system of KM3NeT. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 626-627, S214-S216.	1.6	9
153	AMADEUSâ€"The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 626-627, 128-143.	1.6	58
154	Time calibration of the ANTARES neutrino telescope. Astroparticle Physics, 2011, 34, 539-549.	4.3	85
155	R&D for an innovative acoustic positioning system for the KM3NeT neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 626-627, S211-S213.	1.6	11
156	Search for a diffuse flux of high-energy <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>1½</mml:mi><mml:mi>1¼</mml:mi></mml:msub></mml:math> with the ANTARES neutro telescope. Physics Letters, Section B: Nuclear, Elementary Particle and	4.1	59
157	High-Energy Physics, 2011, 696, 16-22. Measurement of the atmospheric muon flux with a 4GeV threshold in the ANTARES neutrino telescope. Astroparticle Physics, 2010, 33, 86-90.	4. 3	34
158	Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector. Astroparticle Physics, 2010, 34, 179-184.	4.3	53
159	A prototype for the acoustic triangulation system of the KM3NeT deep sea neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 617, 459-461.	1.6	10
160	Performance of the front-end electronics of the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622, 59-73.	1.6	51
161	Positioning system of the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602, 174-176.	1.6	37
162	Time calibration and positioning for KM3NeT. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602, 183-186.	1.6	5

#	Article	IF	CITATIONS
163	Calibration in acoustic detection of neutrinos. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, S203-S207.	1.6	10
164	Use of parametric acoustic sources to generate neutrino-like signals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, S208-S211.	1.6	5
165	Performance of the first ANTARES detector line. Astroparticle Physics, 2009, 31, 277-283.	4.3	47
166	System of Reciprocal Acoustic Sensors for Monitoring Sea Currents., 2008,,.		1
167	ANTARES: A System of Underwater Sensors Looking for Neutrinos. , 2007, , .		1
168	Calibration of sensors for acoustic detection of neutrinos. Journal of Physics: Conference Series, 2007, 81, 012015.	0.4	3
169	Ultrasonic study of the complete dehydration process of orange peel. Postharvest Biology and Technology, 2007, 43, 115-120.	6.0	9
170	Study of the background on a ZnS(Ag) alpha counter with a plastic veto detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 557, 510-515.	1.6	12
171	FIRST ACTIVITIES IN ACOUSTIC DETECTION OF PARTICLES IN UPV. International Journal of Modern Physics A, 2006, 21, 137-141.	1.5	5
172	FIRST ACTIVITIES IN ACOUSTIC DETECTION OF PARTICLES IN UPV., 2006,,.		0
173	Study of inks on paper engravings using portable EDXRF spectrometry. Nuclear Instruments & Methods in Physics Research B, 2004, 213, 729-734.	1.4	36
174	A scintillator based time-of-flight hodoscope with a new type of emitter follower divider. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 533, 361-369.	1.6	0
175	Comparison of total-reflection X-ray fluorescence, static and portable energy dispersive X-ray fluorescence spectrometers for art and archeometry studies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1581-1586.	2.9	15
176	Design and commissioning of the GSI pion beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 478, 511-526.	1.6	16
177	Commissioning of the pion beam facility at SIS-GSF. European Physical Journal D, 2000, 50, 140-145.	0.4	1
178	X-ray fluorescence analysis of yellow pigments in altarpieces by Valencian artists of the XV and XVI centuries. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 422, 868-873.	1.6	27
179	Applications of the X-ray fluorescence analysis to the cultural patrimony of the Comunidad Valenciana (Spain): Painting, metal and paper. Journal of Radioanalytical and Nuclear Chemistry, 1999, 240, 523-528.	1.5	8
180	Results of the commissioning of the Pion Beam Factory at SIS/GSI. , 1999, , .		0

#	Article	IF	CITATIONS
181	Ultrasonic testing of the time evolution properties of oranges. , 0, , .		0
182	A polarized fast radio burst at low Galactic latitude. Monthly Notices of the Royal Astronomical Society, 0 , 0 .	4.4	45
183	New design of an acoustic array calibrator for underwater neutrino telescopes. , 0, , .		1
184	R&D studies for the development of acoustic sensors for dark matter bubble chamber detectors. , $0, \dots$		0