
Maya Shankar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3927338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Base Mediated Diazirination via Iodine(III) Reagents. Organic Letters, 2022, 24, 2815-2820.	4.6	6
2	Access to Nitrones from Amines via Electrocatalysis at Room Temperature. Advanced Synthesis and Catalysis, 2022, 364, 1982-1988.	4.3	2
3	Expression, Purification, and In Silico Characterization of Mycobacterium smegmatis Alternative Sigma Factor SigB. Disease Markers, 2022, 2022, 1-11.	1.3	2
4	Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. Journal of Organic Chemistry, 2021, 86, 5908-5921.	3.2	5
5	Photo-oxidative Ruthenium(II)-Catalyzed Formal [3 + 2] Heterocyclization of Thioamides to Thiadiazoles. Organic Letters, 2021, 23, 3809-3813.	4.6	17
6	Oneâ€pot Mitsunobu Protocol to Access Ketene S,Sâ€∤N,Sâ€Acetals at Room Temperature. European Journal of Organic Chemistry, 2021, 2021, 5884.	2.4	1
7	Antifungal Activity of Siderophore Isolated From Escherichia coli Against Aspergillus nidulans via Iron-Mediated Oxidative Stress. Frontiers in Microbiology, 2021, 12, 729032.	3.5	11
8	Electrochemical Synthesis of 1,2,3-Thiadiazoles from α-Phenylhydrazones. Journal of Organic Chemistry, 2021, 86, 18004-18016.	3.2	13
9	Metal―and Catalystâ€Free Oneâ€Pot Cascade Coupling of αâ€Enolic Dithioesters with inâ€situ Generated 4â€Chloroâ€3â€formylcoumarin: Access to Thioxothiopyrano[3,2―c]chromenâ€5(2 H)â€ones. Advanced Synt and Catalysis, 2020, 362, 512-517.	heisis	14
10	Revisiting the role of vitamin D levels in the prevention of COVID-19 infection and mortality in European countries post infections peak. Aging Clinical and Experimental Research, 2020, 32, 1609-1612.	2.9	33
11	Rhodium(II)-Catalyzed Annulative Coupling of β-Ketothioamides with α-Diazo Compounds: Access to Highly Functionalized Thiazolidin-4-ones and Thiazolines. Journal of Organic Chemistry, 2020, 85, 8320-8329.	3.2	27
12	Visible-Light Photocatalysis of Eosin Y: HAT and Complementing MS-CPET Strategy to Trifluoromethylation of β-Ketodithioesters with Langlois' Reagent. Journal of Organic Chemistry, 2020, 85, 10098-10109.	3.2	18
13	Leishmania donovani infection induce differential miRNA expression in CD4+ T cells. Scientific Reports, 2020, 10, 3523.	3.3	13
14	Visibleâ€Lightâ€Driven Photocatalyst―and Additiveâ€Free Crossâ€Coupling of βâ€Ketothioamides with αâ€Dia 1,3â€Diketones: Access to Highly Functionalized Thiazolines. Chemistry - A European Journal, 2020, 26, 8083-8089.	azo 3.3	26
15	Siteâ€Specific Sâ€Allylation of αâ€Enolic Dithioesters with Moritaâ€Baylisâ€Hillman Acetates at Room Temperature: Precursor for Thiopyrans. Advanced Synthesis and Catalysis, 2019, 361, 4091-4105.	4.3	14
16	Organocatalytic Domino Reaction of Spiroaziridine Oxindoles and Malononitrile for the Enantiopure Synthesis of Spiro[dihydropyrrole-3,3′-oxindoles]. Journal of Organic Chemistry, 2019, 84, 8194-8201.	3.2	18
17	Classification of Clinical Isolates of Klebsiella pneumoniae Based on Their in vitro Biofilm Forming Capabilities and Elucidation of the Biofilm Matrix Chemistry With Special Reference to the Protein Content. Frontiers in Microbiology, 2019, 10, 669.	3.5	34
18	Visible-Light-Mediated Synthesis of 1,2,4-Dithiazolidines from Î ² -Ketothioamides through a Hydrogen-Atom-Transfer Photocatalytic Approach of Eosin Y. Journal of Organic Chemistry, 2019, 84, 5404-5412.	3.2	30

#	Article	IF	CITATIONS
19	Phosphonium ylide catalysis: a divergent diastereoselective approach to synthesize cyclic ketene acetals [thia(zolidines/zinanes)] from β-ketothioamides and dihaloalkanes. Organic and Biomolecular Chemistry, 2019, 17, 9151-9162.	2.8	21
20	Catalystâ€Free Oneâ€Pot Access to Pyrazoles and Disulfideâ€Tethered Pyrazoles via Deamidative Heteroannulation of βâ€Ketodithioesters with Semicarbazide Hydrochloride in Water. Advanced Synthesis and Catalysis, 2018, 360, 1780-1785.	4.3	7
21	Copper-Catalyzed One-Pot Cross-Dehydrogenative Thienannulation: Chemoselective Access to Naphtho[2,1- <i>b</i>]thiophene-4,5-diones and Subsequent Transformation to Benzo[<i>a</i>]thieno[3,2- <i>c</i>]phenazines. Journal of Organic Chemistry, 2018, 83, 2173-2181.	3.2	23
22	2â€Mercaptoquinoline Analogues: A Potent Antileishmanial Agent. ChemistrySelect, 2018, 3, 1688-1692.	1.5	7
23	Quantum curcumin mediated inhibition of gingipains and mixed-biofilm of <i>Porphyromonas gingivalis</i> causing chronic periodontitis. RSC Advances, 2018, 8, 40426-40445.	3.6	30
24	BrÃ,nsted acid-catalyzed metal-free one-pot synthesis of benzimidazoles via [4+1] heteroannulation of ortho-phenylenediamines with β-oxodithioesters. Arkivoc, 2018, 2018, 81-89.	0.5	2
25	Monoterpene Indole Alkaloids from <i>Anthocephalus cadamba</i> Fruits Exhibiting Anticancer Activity in Human Lung Cancer Cell Line H1299. ChemistrySelect, 2018, 3, 8468-8472.	1.5	18
26	Metal-Free One-Pot Four-Component Cascade Annulation in Ionic Liquids at Room Temperature: Convergent Access to Thiazoloquinolinone Derivatives. Journal of Organic Chemistry, 2018, 83, 7950-7961.	3.2	18
27	Chemoselective one-pot access to benzo[e]indole-4,5-diones and naphtho[2,1-b]thiophene-4,5-diones via copper-catalyzed oxidative [3Â+ 2] annulation of α-oxoketene N,S-acetals/l²-ketothioamides with α-/l²-naphthols. Tetrahedron, 2018, 74, 5920-5931.	1.9	12
28	p -Toluenesulfonic acid-catalyzed metal-free formal [4Â+Â1] heteroannulation via N H/O H/S H functionalization: One-pot access to 2-aryl/hetaryl/alkyl benzazole derivatives. Tetrahedron, 2017, 73, 879-887.	1.9	21
29	Dithioester-enabled chemodivergent synthesis of acids, amides and isothiazoles via C C bond cleavage and C O/C N/C S bond formations under metal- and catalyst-free conditions. Tetrahedron Letters, 2017, 58, 2512-2516.	1.4	13
30	Access to Fully Substituted Thiazoles and 2,3-Dihydrothiazoles via Copper-Catalyzed [4 + 1] Heterocyclization of α-(<i>N</i> -Hydroxy/aryl)imino-β-oxodithioesters with α-Diazocarbonyls. Journal of Organic Chemistry, 2017, 82, 10846-10854.	3.2	29
31	Standardization and classification of In vitro biofilm formation by clinical isolates of Staphylococcus aureus. Journal of Global Infectious Diseases, 2017, 9, 93.	0.5	62
32	Metal- and Catalyst-Free, Formal [4 + 1] Annulation via Tandem Câ•O/Câ•S Functionalization: One-Pot Access to 3,5-Disubstituted/Annulated Isothiazoles. Organic Letters, 2016, 18, 2451-2454.	4.6	44
33	Developments toward the synthesis and application of 3-hydroxyindanones. Organic and Biomolecular Chemistry, 2016, 14, 8895-8910.	2.8	23
34	Chemo- and regio-selective synthesis of hexacyclic indeno-fused coumarins via domino Diels–Alder dimerization/Baeyer–Villiger oxidation. Tetrahedron, 2016, 72, 5903-5908.	1.9	7
35	Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron, 2016, 72, 5257-5283.	1.9	238
36	Switching Selectivity of α-Enolic Dithioesters: One Pot Access to Functionalized 1,2- and 1,3-Dithioles. Journal of Organic Chemistry, 2016, 81, 11594-11602.	3.2	19

#	Article	IF	CITATIONS
37	Acidâ€Controlled Chemodivergent Synthesis of Three Differently Substituted Quinolines <i>via</i> Site Selective Coupling of <i>ortho</i> ―Aminoaryl Ketones with αâ€Enolic Dithioesters. Advanced Synthesis and Catalysis, 2016, 358, 1195-1201.	4.3	19
38	p-TSA/Base-Promoted Propargylation/Cyclization of β-Ketothioamides for the Regioselective Synthesis of Highly Substituted (Hydro)thiophenes. Journal of Organic Chemistry, 2016, 81, 5824-5836.	3.2	35
39	Progress in 1,3-dipolar cycloadditions in the recent decade: an update to strategic development towards the arsenal of organic synthesis. Tetrahedron, 2016, 72, 1603-1644.	1.9	155
40	Metal-free BrÃ,nsted acid mediated synthesis of fully substituted thiophenes via chemo- and regioselective intramolecular cyclization of α,α′-bis(β-oxodithioesters) at room temperature. Organic and Biomolecular Chemistry, 2016, 14, 434-439.	2.8	16
41	Solvent-free one-pot efficient and highly regioselective access to functionalized thiazolopyridones from α-enolic dithioesters. Arkivoc, 2016, 2016, 42-52.	0.5	1
42	Iodineâ€Mediated Copperâ€Catalyzed Efficient <i>α</i> â€C(<i>sp</i> ²)â€Thiomethylation of <i>α</i> â€Oxoketene Dithioacetals with Dimethyl Sulfoxide in One Pot. Advanced Synthesis and Catalysis, 2015, 357, 3969-3976.	4.3	34
43	Metal-free aerobic one-pot synthesis of substituted/annulated quinolines from alcohols via indirect FriedlĀ ¤ der annulation. Organic and Biomolecular Chemistry, 2015, 13, 9570-9574.	2.8	38
44	Organoindium mediated Csp3–S cross-coupling/migratory allenylation/thioannulation cascade: expedient synthesis of highly substituted thiophene frameworks. Tetrahedron, 2015, 71, 1844-1850.	1.9	11
45	Synthesis of 3-hydroxyindanones via potassium salt of amino acid catalyzed regioselective intramolecular aldolization of ortho-diacylbenzenes. Tetrahedron Letters, 2015, 56, 981-985.	1.4	13
46	Metalâ€Free Reagent Dependent SS and CC Homocoupling of αâ€Enolic Dithioesters at Room Temperature: Direct Access to Fully Substituted Symmetrical Thiophenes <i>via</i> Chemoselective Paal–Knorr Approach. Advanced Synthesis and Catalysis, 2015, 357, 530-538.	4.3	22
47	Ligand―and Baseâ€Free Cu ^{II} â€Mediated Selective <i>S</i> â€Arylation of αâ€Enolic Dithioesters by Chan–Lam Coupling at Room Temperature. European Journal of Organic Chemistry, 2015, 2015, 409-416.	[/] 2.4	12
48	Thionyl chloride mediated dehydroxylation of 3-hydroxyindanones to indenones. Tetrahedron Letters, 2015, 56, 4603-4606.	1.4	4
49	Iodine-Mediated Annulation of S-Allylated α-Enolic Dithioesters: Rapid Access to 2-Alkylidene-1,3-dithiolanes at Room Temperature. Synthesis, 2015, 47, 1510-1518.	2.3	7
50	A facile and highly convergent approach to thiazolo[3,2-a]pyridines via one-pot multicomponent domino reaction under metal-free and solvent-free conditions. Tetrahedron, 2015, 71, 3422-3427.	1.9	11
51	Copper-catalyzed site-selective S–S and C–C homocoupling of α-enolic dithioesters: straightforward and efficient access to 1,2-dithiols. Tetrahedron Letters, 2015, 56, 2593-2596.	1.4	5
52	In/I2 mediated functional group transformation: a direct approach toward the selective conversion of dithioester to ester. Tetrahedron Letters, 2015, 56, 5553-5556.	1.4	3
53	CuSO ₄ – <scp>d</scp> -glucose, an inexpensive and eco-efficient catalytic system: direct access to diverse quinolines through modified FriedlŤder approach involving S _N Ar/reduction/annulation cascade in one pot. RSC Advances, 2015, 5, 7654-7660.	3.6	36
54	Lewis acid mediated three-component one-flask regioselective synthesis of densely functionalized 4-amino-1,2-dihydropyridines via cascade Knoevenagel/Michael/cyclization sequence. Tetrahedron, 2015, 71, 301-307.	1.9	14

#	Article	IF	CITATIONS
55	QTL mapping for important horticultural traits in pepper (Capsicum annuum L.). Journal of Plant Biochemistry and Biotechnology, 2015, 24, 154-160.	1.7	21
56	Catalyst-free one-pot four-component domino reactions in water–PEG-400: highly efficient and convergent approach to thiazoloquinoline scaffolds. Green Chemistry, 2015, 17, 950-958.	9.0	55
57	Regioselectivity in the Ring Opening of Epoxides: A Metal-Free Cascade C–S/C–O Bond Formation Approach to 1,3-Oxathiolan-2-ylidenes through Heteroannulation of α-Enolic Dithioesters at Room Temperature. Synthesis, 2014, 46, 1815-1822.	2.3	14
58	In(OTf)3-catalysed one-pot versatile pyrrole synthesis through domino annulation of α-oxoketene-N,S-acetals with nitroolefins. Organic and Biomolecular Chemistry, 2014, 12, 5484-5491.	2.8	22
59	DMAP-promoted domino annulation of \hat{l}^2 -ketothioamides with internal alkynes: a highly regioselective access to functionalized 1,3-thiazolidin-4-ones at room temperature. RSC Advances, 2014, 4, 11640-11647.	3.6	25
60	Regioselective quadruple domino aldolization/aldol condensation/Michael/SNAr-cyclization: construction of hexacyclic indeno-fused C-nor-D-homo-steroid frameworks. Tetrahedron, 2014, 70, 2190-2194.	1.9	11
61	Indium(0)â€Mediated C–S/O Crossâ€Coupling Approach Towards the Regioselective Alkylation of αâ€Enolic Esters/Dithioesters: A Mechanistic Insight. European Journal of Organic Chemistry, 2014, 2014, 2964-2971.	2.4	17
62	A facile and straightforward synthesis of 1,2,3-thiadiazoles from α-enolicdithioesters via nitrosation/reduction/diazotization/cyclization cascade in one-pot. Tetrahedron Letters, 2014, 55, 2430-2433.	1.4	20
63	Lewis acid promoted construction of chromen-4-one and isoflavone scaffolds via regio- and chemoselective domino Friedel–Crafts acylation/Allan–Robinson reaction. Organic and Biomolecular Chemistry, 2014, 12, 9216-9222.	2.8	8
64	Regioselective Synthesis of Dihydrothiophene and Thiopyran Frameworks via Catalyst-Controlled Intramolecular C _{l³} /C _{l´} –S Fusion of α-Allyl-l²â€²-oxodithioesters. Organic Letters, 201 16, 5536-5539.	4,4.6	31
65	DMAP-promoted cascade C–S/C–N bonds formation approach to 1,3-thiazolidin-4-ones via annulation of β-ketothioamides with α-halocarboxylic acids at room temperature. Tetrahedron, 2014, 70, 6980-6984.	1.9	17
66	In(OTf)3-mediated dehydrative annulation of β-ketothioamides with phenylglyoxal: one-pot access to diversely functionalized pyrrol-2-thiones. Tetrahedron Letters, 2014, 55, 5182-5185.	1.4	20
67	Ironâ€Promoted Domino Annulation of αâ€Enolic Dithioesters with Ninhydrin under Solventâ€Free Conditions: Chemoselective Direct Access to Indeno[1,2â€ <i>b</i>]thiophenes. European Journal of Organic Chemistry, 2014, 2014, 5501-5508.	2.4	12
68	ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis. RSC Advances, 2014, 4, 55924-55959.	3.6	211
69	Easy access to α-hydroxyimino-β-oxodithioesters and application towards the synthesis of diverse 1,4-thiazine-3-ones via reduction/annulation cascade. Tetrahedron, 2014, 70, 3740-3746.	1.9	12
70	Regioselective dehydrative intramolecular heteroannulation of β-allyl-β-hydroxy dithioesters: facile and straightforward entry toÂ2H-thiopyrans. Tetrahedron, 2014, 70, 914-918.	1.9	27
71	β-Oxodithioesters: a new frontier for diverse heterocyclic architectures. RSC Advances, 2013, 3, 14183.	3.6	53
72	Y(OTf)3 catalyzed substitution dependent oxidative C(sp3)–C(sp3) cleavage and regioselective dehydration of β-allyl-β-hydroxydithioesters: alternate route to α,β-unsaturated ketones and functionalized dienes. Tetrahedron, 2013, 69, 8899-8903	1.9	12

#	Article	IF	CITATIONS
73	Palladium Catalyzed Oxidative Coupling of α-Enolic Dithioesters: A New Entry to 3,4,5-Trisubstituted 1,2-Dithioles via a Double Activation Strategy. Organic Letters, 2013, 15, 5386-5389.	4.6	34
74	Eco-efficient, regioselective and rapid access to 4,5-disubstituted 1,2,3-thiadiazoles via [3 + 2] cycloaddition of α-enolicdithioesters with tosyl azide under solvent-free conditions. Green Chemistry, 2013, 15, 954.	9.0	56
75	One-pot straightforward approach to 2,3-disubstituted benzo/naphtho[b]furans via domino annulation of l±-oxoketene dithioacetals and 1,4-benzo/naphthoquinone mediated by AlCl3 at room temperature. Tetrahedron, 2013, 69, 6612-6619.	1.9	27
76	Diversity oriented catalyst-free and solvent-free one-pot MCR at room temperature: rapid and regioselective convergent approach to highly functionalized dihydro-4H-thiopyrans. Tetrahedron, 2013, 69, 8013-8018.	1.9	31
77	Organocatalyzed straightforward synthesis of highly fluorescent 3,5-disubstituted 2,6-dicyanoanilines via domino annulation of α-enolicdithioesters with malononitrile. RSC Advances, 2013, 3, 5345.	3.6	12
78	Oneâ€Pot Threeâ€Component Heteroannulation of βâ€Oxo Dithioesters, Amines and Hydroxylamine: Regioselective, Facile and Straightforward Entry to 5â€Substituted 3â€Aminoisoxazoles. European Journal of Organic Chemistry, 2013, 2013, 4026-4031.	2.4	34
79	Construction of five- and six-membered heterocycles on both Cp rings of the ferrocene moiety of α-oxoketene-S,S-acetal and β-oxodithioester via heteroaromatic annulation. RSC Advances, 2013, 3, 245-252.	3.6	20
80	DMAP mediated one-pot domino thienannulation: a versatile, regioselective and green mechanochemical route to naphtho[2,3-b]thiophenes. RSC Advances, 2013, 3, 13811.	3.6	25
81	Synthesis of benzo fused dioxadiazasilamacrocycles via remote dianion cyclization. Tetrahedron Letters, 2012, 53, 6889-6892.	1.4	2
82	InCl3 catalyzed domino route to 2H-chromene-2-ones via [4 + 2] annulation of 2-hydroxyarylaldehydes with α-oxoketene dithioacetal under solvent-free conditions. RSC Advances, 2012, 2, 2413.	3.6	29
83	Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine, 2012, 5, 485-497.	0.8	323
84	Recent advances in InCl3-catalyzed one-pot organic synthesis. Tetrahedron, 2012, 68, 8683-8697.	1.9	56
85	4-Dimethylamino Pyridine-Promoted One-Pot Three-Component Regioselective Synthesis of Highly Functionalized 4H-Thiopyrans via Heteroannulation of β-Oxodithioesters. ACS Combinatorial Science, 2012, 14, 224-230.	3.8	38
86	Molecular Docking and in Vitro Antileishmanial Evaluation of Chromene-2-thione Analogues. ACS Medicinal Chemistry Letters, 2012, 3, 243-247.	2.8	50
87	Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2, 4547.	3.6	458
88	InCl ₃ â€Driven Regioselective Synthesis of Functionalized/Annulated Quinolines: Scope and Limitations. Chemistry - an Asian Journal, 2012, 7, 778-787.	3.3	64
89	DABCO-Promoted three-component regioselective synthesis of functionalized chromen-5-ones and pyrano[3,2-c]chromen-5-ones via direct annulation of α-oxoketene-N,S-arylaminoacetals under solvent-free conditions. Green Chemistry, 2012, 14, 447.	9.0	67
90	Highly convergent one-pot four-component regioselective synthesis of 4H-benzo[f]chromenes via annulation of l²-oxodithioesters. Tetrahedron, 2012, 68, 1247-1252.	1.9	33

#	Article	IF	CITATIONS
91	An efficient one-pot three-component synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Tetrahedron Letters, 2012, 53, 399-402.	1.4	76
92	Highly Regioselective Oneâ€Pot, Threeâ€Component Synthesis of 1â€Arylâ€3,4â€Substituted/Annulatedâ€5â€(Cycloamino)/(Alkylamino)pyrazoles from βâ€Oxodithioesters. Euroµ Journal of Organic Chemistry, 2012, 2012, 967-974.	0 221A	54
93	Recent Advances in P2O5 Catalyzed Organic Synthesis. Current Catalysis, 2012, 1, 155-163.	0.5	2
94	One-Pot Two-Component [3 + 2] Cycloaddition/Annulation Protocol for the Synthesis of Highly Functionalized Thiophene Derivatives. Journal of Organic Chemistry, 2011, 76, 8009-8014.	3.2	90
95	Regioselective Synthesis of Tetrahydrothiochromen-5-ones via a One-Pot Three-Component Solvent-Free Domino Protocol. Organic Letters, 2011, 13, 3762-3765.	4.6	67
96	Solvent-free sonochemical one-pot three-component synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-triones and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. Tetrahedron Letters, 2011, 52, 7195-7198.	1.4	58
97	An expedient route to highly functionalized 2H-chromene-2-thiones via ring annulation of β-oxodithioesters catalyzed by InCl3 under solvent-free conditions. Tetrahedron, 2011, 67, 584-589.	1.9	44
98	An efficient one-pot solvent-free synthesis and photophysical properties of 9-aryl/alkyl-octahydroxanthene-1,8-diones. Tetrahedron, 2011, 67, 3698-3704.	1.9	58
99	l-Proline catalyzed synthesis of densely functionalized pyrido[2,3-d]pyrimidines via three-component one-pot domino Knoevenagel aza-Diels–Alder reaction. Tetrahedron, 2011, 67, 5935-5941.	1.9	62
100	Efficient synthesis of naphthodiazacrown ethers. Tetrahedron Letters, 2011, 52, 3818-3820.	1.4	13
101	Heteroaromatic annulation studies on 2-[bis(methylthio)methylene]-1,3-indanedione: efficient routes to indenofused heterocycles. Tetrahedron, 2010, 66, 7389-7398.	1.9	26
102	A facile approach for the synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthenes under solvent-free condition. Tetrahedron Letters, 2010, 51, 442-445.	1.4	94
103	An efficient and facile one-pot synthesis of propargylamines by three-component coupling of aldehydes, amines, and alkynes via C–H activation catalyzed by NiCl2. Tetrahedron Letters, 2010, 51, 5555-5558.	1.4	135
104	Application of cyclic-1,3-diketones in domino and multicomponent reactions: facile route to highly functionalized chromeno[2,3-d]pyrimidinones and diazabenzo[b]fluorenones under solvent-free conditions. Tetrahedron Letters, 2010, 51, 5933-5936.	1.4	55
105	First InCl3-Catalyzed, Three-Component Coupling of Aldehydes, β-Naphthol, and 6-Amino-1,3-dimethyluracil to Functionalized Naphthopyranopyrimidines. Synlett, 2010, 2010, 1133-1137.	1.8	10
106	Biginelli and Hantzsch-Type Reactions Leading to Highly Functionalized Dihydropyrimidinone, Thiocoumarin, and Pyridopyrimidinone Frameworks via Ring Annulation with β-Oxodithioesters. Journal of Organic Chemistry, 2010, 75, 7785-7795.	3.2	88
107	A novel one-pot procedure for the synthesis of stable dioxadiazastannepines and dioxadiazasilepines. Tetrahedron Letters, 2005, 46, 315-317.	1.4	12
108	Synthesis of Novel Heterocycles from Benzoin-α-oxime by Reaction with ElectrophileÂs. Synthesis, 2004, 2004, 837-839.	2.3	18

#	Article	IF	CITATIONS
109	HEXACOORDINATE ORGANOSILICON(IV) COMPOUNDS WITH A TETRADENTATE AZOMETHINE LIGAND. Synthetic Communications, 2002, 32, 3733-3741.	2.1	5
110	A Convenient Synthetic Entry Into 2,2-Diorganyl-5,6-Diaryl-1,3,4,2-Dioxaza Silacyclohexene Derivatives VIA Dianion Cyclisation: Sequential One-Pot Cyclosylation. Synthetic Communications, 2000, 30, 3589-3594.	2.1	9
111	Efficient and Convenient One-Pot Synthesis of Dioxadiazaphophepines. Synthetic Communications, 2000, 30, 53-61.	2.1	7
112	Dioximes as Synthons for Medium Ring Heterocyclic Compounds. Heterocycles, 2000, 53, 851.	0.7	10
113	TITANIUM(IV) COMPLEXES OF CHELATING 2-(SALICYLIDENEAMINO) BENZENETHIOL. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 155, 245-252.	1.6	5
114	Selective C3-Allylation and Formal [3 + 2]-Annulation of Spiro-Aziridine Oxindoles: Synthesis of 5′-Substituted Spiro[pyrrolidine-3,3′-oxindoles] and Coerulescine. Journal of Organic Chemistry, 0, , .	3.2	6