Roman Stocker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3927319/publications.pdf

Version: 2024-02-01

159 papers 12,708 citations

²⁶⁶³⁰
56
h-index

104 g-index

174 all docs

174 docs citations

174 times ranked

12047 citing authors

#	Article	IF	CITATIONS
1	Settling of highly porous and impermeable particles in linear stratification: implications for marine aggregates. Journal of Fluid Mechanics, 2022, 931, .	3.4	8
2	Survival in a Sea of Gradients: Bacterial and Archaeal Foraging in a Heterogeneous Ocean. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 47-102.	0.6	1
3	The ecological roles of bacterial chemotaxis. Nature Reviews Microbiology, 2022, 20, 491-504.	28.6	77
4	Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nature Communications, 2022, 13, 1657.	12.8	30
5	The structural role of bacterial eDNA in the formation of biofilm streamers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113723119.	7.1	30
6	Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature, 2022, 605, 132-138.	27.8	51
7	A microfluidic platform for characterizing the structure and rheology of biofilm streamers. Soft Matter, 2022, 18, 3878-3890.	2.7	10
8	Bacterial chemotaxis to saccharides is governed byÂa trade-off between sensing and uptake. Biophysical Journal, 2022, 121, 2046-2059.	0.5	1
9	Simultaneous visualization of flow fields and oxygen concentrations to unravel transport and metabolic processes in biological systems. Cell Reports Methods, 2022, 2, 100216.	2.9	12
10	Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
11	Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nature Protocols, 2021, 16, 634-676.	12.0	41
12	Chemotaxis under flow disorder shapes microbial dispersion in porous media. Nature Physics, 2021, 17, 68-73.	16.7	46
13	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	1.8	46
14	An interdisciplinary and application-oriented approach to teach microfluidics. Biomicrofluidics, 2021, 15, 014104.	2.4	3
15	ARC: An Open Web-Platform for Request/Supply Matching for a Prioritized and Controlled COVID-19 Response. Frontiers in Public Health, 2021, 9, 607677.	2.7	1
16	Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. ISME Journal, 2021, 15, 2614-2626.	9.8	36
17	Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria. PLoS Computational Biology, 2021, 17, e1009023.	3.2	20
18	A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations. Nature Communications, 2021, 12, 3662.	12.8	40

#	Article	IF	CITATIONS
19	Coral mucus rapidly induces chemokinesis and genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral pathogen. ISME Journal, 2021, 15, 3668-3682.	9.8	14
20	Sinking enhances the degradation of organic particles by marine bacteria. Nature Geoscience, 2021, 14, 775-780.	12.9	34
21	Bistability in oxidative stress response determines the migration behavior of phytoplankton in turbulence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
22	Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiology Reviews, 2021, 45, .	8.6	87
23	Using High-Sensitivity Lipidomics To Assess Microscale Heterogeneity in Oceanic Sinking Particles and Single Phytoplankton Cells. Environmental Science & Environmental Science & 2021, 55, 15456-15465.	10.0	6
24	Patterning of Microorganisms and Microparticles through Sequential Capillarity-assisted Assembly. Journal of Visualized Experiments, $2021, \ldots$	0.3	0
25	Raman microspectroscopy for microbiology. Nature Reviews Methods Primers, 2021, 1, .	21.2	57
26	Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nature Communications, 2020, 11, 5104.	12.8	177
27	Trophic Interactions and the Drivers of Microbial Community Assembly. Current Biology, 2020, 30, R1176-R1188.	3.9	165
28	Reduced gravity promotes bacterially mediated anoxic hotspots in unsaturated porous media. Scientific Reports, 2020, 10, 8614.	3.3	4
29	Cutting Through the Noise: Bacterial Chemotaxis in Marine Microenvironments. Frontiers in Marine Science, 2020, 7, .	2.5	12
30	Flagellar kinematics reveals the role of environment in shaping sperm motility. Journal of the Royal Society Interface, 2020, 17, 20200525.	3.4	10
31	Constrained optimal foraging by marine bacterioplankton on particulate organic matter. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25571-25579.	7.1	25
32	PhenoChip: A single-cell phenomic platform for high-throughput photophysiological analyses of microalgae. Science Advances, 2020, 6, .	10.3	32
33	The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nature Communications, 2020, 11, 2851.	12.8	66
34	In Situ Chemotaxis Assay to Examine Microbial Behavior in Aquatic Ecosystems. Journal of Visualized Experiments, 2020, , .	0.3	10
35	On the collision of rods in a quiescent fluid. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3372-3374.	7.1	8
36	Bursts Characterize Coagulation of Rods in a Quiescent Fluid. Physical Review Letters, 2020, 124, 258001.	7.8	9

#	Article	IF	Citations
37	Generating Controlled, Dynamic Chemical Landscapes to Study Microbial Behavior. Journal of Visualized Experiments, 2020, , .	0.3	2
38	Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nature Communications, 2020, 11, 1942.	12.8	30
39	Encounter rates between bacteria and small sinking particles. New Journal of Physics, 2020, 22, 043016.	2.9	22
40	Bacterial Glycogen Provides Short-Term Benefits in Changing Environments. Applied and Environmental Microbiology, 2020, 86, .	3.1	53
41	Raman-based sorting of microbial cells to link functions to their genes. Microbial Cell, 2020, 7, 62-65.	3.2	14
42	Not Just Going with the Flow: The Effects of Fluid Flow on Bacteria and Plankton. Annual Review of Cell and Developmental Biology, 2019, 35, 213-237.	9.4	71
43	Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnology and Oceanography Letters, 2019, 4, 113-118.	3.9	33
44	Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10792-10797.	7.1	41
45	Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nature Communications, 2019, 10, 1877.	12.8	74
46	An automated Raman-based platform for the sorting of live cells by functional properties. Nature Microbiology, 2019, 4, 1035-1048.	13.3	170
47	The role of microbial motility and chemotaxis in symbiosis. Nature Reviews Microbiology, 2019, 17, 284-294.	28.6	160
48	Generalized size scaling of metabolic rates based on single-cell measurements with freshwater phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17323-17329.	7.1	16
49	Chain formation can enhance the vertical migration of phytoplankton through turbulence. Science Advances, 2019, 5, eaaw7879.	10.3	32
50	A Foraging Mandala for Aquatic Microorganisms. ISME Journal, 2019, 13, 563-575.	9.8	35
51	Bacterial maze runners reveal hidden diversity in chemotactic performance. Microbial Cell, 2019, 6, 370-372.	3.2	2
52	Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria. Molecular Systems Biology, 2018, 14, e8623.	7.2	66
53	Heterologous Expression of Pseudomonas putida Methyl-Accepting Chemotaxis Proteins Yields Escherichia coli Cells Chemotactic to Aromatic Compounds. Applied and Environmental Microbiology, 2018, 84, .	3.1	6
54	Deployable micro-traps to sequester motile bacteria. Scientific Reports, 2017, 7, 45897.	3.3	30

#	Article	IF	Citations
55	High-avidity IgA protects the intestine by enchaining growing bacteria. Nature, 2017, 544, 498-502.	27.8	307
56	Finding patches in a heterogeneous aquatic environment: pHâ€taxis by the dispersal stage of choanoflagellates. Limnology and Oceanography Letters, 2017, 2, 37-46.	3.9	19
57	Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nature Microbiology, 2017, 2, 17065.	13.3	727
58	Biofilm disruption by an air bubble reveals heterogeneous age-dependent detachment patterns dictated by initial extracellular matrix distribution. Npj Biofilms and Microbiomes, 2017, 3, 6.	6.4	45
59	Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature, 2017, 543, 555-558.	27.8	113
60	Modus vivendi. Nature Physics, 2017, 13, 326-327.	16.7	1
61	Redefining the spongeâ€symbiont acquisition paradigm: sponge microbes exhibit chemotaxis towards hostâ€derived compounds. Environmental Microbiology Reports, 2017, 9, 750-755.	2.4	20
62	Logarithmic sensing in Bacillus subtilis aerotaxis. Npj Systems Biology and Applications, 2017, 3, 16036.	3.0	29
63	Dual function of tropodithietic acid as antibiotic and signaling molecule in global gene regulation of the probiotic bacterium Phaeobacter inhibens. Scientific Reports, 2017, 7, 730.	3.3	57
64	A <i>particularly </i> useful system to study the ecology of microbes. Environmental Microbiology Reports, 2017, 9, 16-17.	2.4	10
65	A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nature Microbiology, 2017, 2, 1344-1349.	13.3	60
66	Natural search algorithms as a bridge between organisms, evolution, and ecology. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9413-9420.	7.1	44
67	Microbial Morphology and Motility as Biosignatures for Outer Planet Missions. Astrobiology, 2016, 16, 755-774.	3.0	34
68	Speed-dependent chemotactic precision in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8624-8629.	7.1	92
69	Resilience of bacterial quorum sensing against fluid flow. Scientific Reports, 2016, 6, 33115.	3.3	25
70	The Microbial Olympics 2016. Nature Microbiology, 2016, 1, 16122.	13.3	7
71	A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nature Communications, 2016, 7, 10860.	12.8	79
72	That sinking feeling: Suspended sediments can prevent the ascent of coral egg bundles. Scientific Reports, 2016, 6, 21567.	3.3	28

#	Article	IF	Citations
73	Intermittent turbulence in flowing bacterial suspensions. Journal of the Royal Society Interface, 2016, 13, 20160175.	3.4	17
74	Microfluidic Studies of Biofilm Formation in Dynamic Environments. Journal of Bacteriology, 2016, 198, 2589-2595.	2.2	71
75	Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1576-1581.	7.1	220
76	Temperature-induced behavioral switches in a bacterial coral pathogen. ISME Journal, 2016, 10, 1363-1372.	9.8	54
77	Sperm chemotaxis promotes individual fertilization success in sea urchins. Journal of Experimental Biology, 2016, 219, 1458-66.	1.7	37
78	Physical limits on bacterial navigation in dynamic environments. Journal of the Royal Society Interface, 2016, 13, 20150844.	3.4	24
79	Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ, 2016, 4, e2486.	2.0	64
80	A laboratory model of marine snow: Preparation and characterization of porous fiber particles. Limnology and Oceanography: Methods, 2015, 13, 664-671.	2.0	3
81	Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Frontiers in Microbiology, 2015, 6, 432.	3.5	142
82	Flagella, flexibility and flow: Physical processes in microbial ecology. European Physical Journal: Special Topics, 2015, 224, 3119-3140.	2.6	13
83	Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nature Reviews Microbiology, 2015, 13, 761-775.	28.6	134
84	Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton. Journal of the Royal Society Interface, 2015, 12, 20150791.	3.4	48
85	Chemotaxis by natural populations of coral reef bacteria. ISME Journal, 2015, 9, 1764-1777.	9.8	60
86	Focus on the physics of biofilms. New Journal of Physics, 2015, 17, 030401.	2.9	9
87	Microbes in flow. Current Opinion in Microbiology, 2015, 25, 1-8.	5.1	101
88	Visualization of coral host–pathogen interactions using a stable GFP-labeled Vibrio coralliilyticus strain. Coral Reefs, 2015, 34, 655-662.	2.2	16
89	Generalized receptor law governs phototaxis in the phytoplankton <i>Euglena gracilis</i> Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7045-7050.	7.1	60
90	Sensitivity of the rate of nutrient uptake by chemotactic bacteria to physical and biological parameters in a turbulent environment. Journal of Theoretical Biology, 2015, 387, 120-135.	1.7	15

#	Article	IF	Citations
91	Flagella, flexibility and flow: Physical processes in microbial ecology. European Physical Journal: Special Topics, 2015, 224, 3119-3140.	2.6	3
92	The 100 $\hat{A}\mu m$ length scale in the microbial ocean. Aquatic Microbial Ecology, 2015, 76, 189-194.	1.8	19
93	Bacterial transport suppressed by fluid shear. Nature Physics, 2014, 10, 212-217.	16.7	310
94	The effect of reversals for a stochastic source-seeking process inspired by bacterial chemotaxis. , $2014, \ldots$		0
95	Variability in Microbial Community Composition and Function Between Different Niches Within a Coral Reef. Microbial Ecology, 2014, 67, 540-552.	2.8	68
96	Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild <i>Prochlorococcus</i> . Science, 2014, 344, 416-420.	12.6	506
97	Microfluidics Expanding the Frontiers of Microbial Ecology. Annual Review of Biophysics, 2014, 43, 65-91.	10.0	167
98	Turbulent Fluid Acceleration Generates Clusters of Gyrotactic Microorganisms. Physical Review Letters, 2014, 112, 044502.	7.8	92
99	Synergistic Prevention of Biofouling in Seawater Desalination by Zwitterionic Surfaces and Lowâ€Level Chlorination. Advanced Materials, 2014, 26, 1711-1718.	21.0	146
100	Vortical ciliary flows actively enhance mass transport in reef corals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13391-13396.	7.1	173
101	A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME Journal, 2014, 8, 999-1007.	9.8	180
102	Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5622-5627.	7.1	187
103	Failed Escape: Solid Surfaces Prevent Tumbling of <i>Escherichia coli </i> . Physical Review Letters, 2014, 113, 068103.	7.8	160
104	RecA Protein Plays a Role in the Chemotactic Response and Chemoreceptor Clustering of Salmonella enterica. PLoS ONE, 2014, 9, e105578.	2.5	47
105	Microfluidic-based Time-kill Kinetic Assay. Bio-protocol, 2014, 4, .	0.4	1
106	Bacteria can exploit a flagellar buckling instability to change direction. Nature Physics, 2013, 9, 494-498.	16.7	262
107	Turbulence drives microscale patches of motile phytoplankton. Nature Communications, 2013, 4, 2148.	12.8	246
108	Cell Patterning with Mucin Biopolymers. Biomacromolecules, 2013, 14, 3010-3016.	5.4	33

#	Article	IF	Citations
109	Capillary Interception of Floating Particles by Surface-Piercing Vegetation. Physical Review Letters, 2013, 111, 164501.	7.8	34
110	The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms. PLoS Pathogens, 2013, 9, e1003526.	4.7	253
111	Low-Reynolds-number swimming at pycnoclines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3856-3861.	7.1	77
112	Bacterial rheotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4780-4785.	7.1	225
113	The wiggling trajectories of bacteria. Journal of Fluid Mechanics, 2012, 705, 58-76.	3.4	94
114	Ecology and Physics of Bacterial Chemotaxis in the Ocean. Microbiology and Molecular Biology Reviews, 2012, 76, 792-812.	6.6	230
115	Marine Microbes See a Sea of Gradients. Science, 2012, 338, 628-633.	12.6	541
116	Trade-Offs of Chemotactic Foraging in Turbulent Water. Science, 2012, 338, 675-679.	12.6	174
117	Thin Phytoplankton Layers: Characteristics, Mechanisms, and Consequences. Annual Review of Marine Science, 2012, 4, 177-207.	11.6	206
118	Fluid Mechanics of Planktonic Microorganisms. Annual Review of Fluid Mechanics, 2012, 44, 373-400.	25.0	409
119	Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis. Analytical Chemistry, 2011, 83, 9579-9585.	6.5	115
120	The Ciliate Paramecium Shows Higher Motility in Non-Uniform Chemical Landscapes. PLoS ONE, 2011, 6, e15274.	2.5	9
121	Systematic Spatial Bias in DNA Microarray Hybridization Is Caused by Probe Spot Position-Dependent Variability in Lateral Diffusion. PLoS ONE, 2011, 6, e23727.	2.5	18
122	Gyrotaxis in a Steady Vortical Flow. Physical Review Letters, 2011, 106, 238102.	7.8	93
123	Microbial alignment in flow changes ocean light climate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3860-3864.	7.1	42
124	Response to Comment on "How Cats Lap: Water Uptake by <i>Felis catus</i> ― Science, 2011, 334, 311-31	.112.6	0
125	On the water lapping of felines and the water running of lizards. Communicative and Integrative Biology, 2011, 4, 213-215.	1.4	3
126	Response rescaling in bacterial chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13870-13875.	7.1	142

#	Article	IF	Citations
127	Reverse and flick: Hybrid locomotion in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2635-2636.	7.1	86
128	Diffusion-limited retention of porous particles at density interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22163-22168.	7.1	47
129	Filtration of submicrometer particles by pelagic tunicates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15129-15134.	7.1	127
130	Stratlets: Low Reynolds Number Point-Force Solutions in a Stratified Fluid. Physical Review Letters, 2010, 105, 084502.	7.8	60
131	Chemoattraction to Dimethylsulfoniopropionate Throughout the Marine Microbial Food Web. Science, 2010, 329, 342-345.	12.6	328
132	Microfluidics for bacterial chemotaxis. Integrative Biology (United Kingdom), 2010, 2, 604.	1.3	138
133	Bacterial Chemotaxis in Linear and Nonlinear Steady Microfluidic Gradients. Nano Letters, 2010, 10, 3379-3385.	9.1	127
134	How Cats Lap: Water Uptake by <i>Felis catus</i> . Science, 2010, 330, 1231-1234.	12.6	109
135	Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquatic Microbial Ecology, 2010, 59, 161-168.	1.8	65
136	Separation of Microscale Chiral Objects by Shear Flow. Physical Review Letters, 2009, 102, 158103.	7.8	95
137	Bacterial chemotaxis towards the extracellular products of the toxic phytoplankton Heterosigma akashiwo. Journal of Plankton Research, 2009, 31, 1557-1561.	1.8	33
138	Tumbling for Stealth?. Science, 2009, 325, 400-402.	12.6	23
139	Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers. Journal of Fluid Mechanics, 2009, 632, 49-68.	3.4	7 5
140	Disruption of Vertical Motility by Shear Triggers Formation of Thin Phytoplankton Layers. Science, 2009, 323, 1067-1070.	12.6	255
141	Resource Patch Formation and Exploitation throughout the Marine Microbial Food Web. American Naturalist, 2009, 173, E15-E29.	2.1	71
142	Experimental Verification of the Behavioral Foundation of Bacterial Transport Parameters Using Microfluidics. Biophysical Journal, 2008, 95, 4481-4493.	0.5	89
143	Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4209-4214.	7.1	348
144	A microfluidic chemotaxis assay to study microbial behavior in diffusing nutrient patches. Limnology and Oceanography: Methods, 2008, 6, 477-488.	2.0	44

#	Article	IF	Citations
145	Spontaneous oscillations of a sessile lens. Journal of Fluid Mechanics, 2007, 583, 465-475.	3.4	32
146	Chemotactic Response of Marine Micro-Organisms to Micro-Scale Nutrient Layers. Journal of Visualized Experiments, 2007, , 203.	0.3	2
147	Microorganisms in vortices: a microfluidic setup. Limnology and Oceanography: Methods, 2006, 4, 392-398.	2.0	37
148	Microscale Synthetic Schlieren. Experiments in Fluids, 2006, 42, 41-48.	2.4	15
149	Optimizing diffusion-driven flow in a fissure. Physics of Fluids, 2005, 17, 128104.	4.0	2
150	Lubrication in a corner. Journal of Fluid Mechanics, 2005, 544, 353.	3.4	12
151	An experimental investigation of the angular dependence of diffusion-driven flow. Physics of Fluids, 2004, 16, 3503-3505.	4.0	20
152	Corner flow in free liquid films. Journal of Engineering Mathematics, 2004, 50, 267-288.	1.2	4
153	Baroclinic geostrophic adjustment in a rotating circular basin. Journal of Fluid Mechanics, 2004, 515, 63-86.	3.4	13
154	Modeling circulation in lakes: Spatial and temporal variations. Limnology and Oceanography, 2003, 48, 983-994.	3.1	150
155	Horizontal transport and dispersion in the surface layer of a mediumâ€sized lake. Limnology and Oceanography, 2003, 48, 971-982.	3.1	51
156	Energy Partitioning and Horizontal Dispersion in a Stratified Rotating Lake*. Journal of Physical Oceanography, 2003, 33, 512-529.	1.7	40
157	A Compact, Low-Cost GPS Drifter for Use in the Oceanic Nearshore Zone, Lakes, and Estuaries. Journal of Atmospheric and Oceanic Technology, 2003, 20, 1880-1884.	1.3	61
158	Non-linear dynamic analysis with deterministic and random seas: the case of minimum platforms. , 2003, , .		1
159	Transport of Pseudomonas aeruginosa in Polymer Solutions. Frontiers in Physics, 0, 10, .	2.1	0