
Mihaela Puiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3925004/publications.pdf Version: 2024-02-01

Μιμλειλ Ριιιι

#	Article	IF	CITATIONS
1	Early detection of cannabinoids in biological samples based on their affinity interaction with the growth hormone secretagogue receptor. Talanta, 2022, 237, 122905.	5.5	2
2	Reusable hybrid nanocomposites for clean degradation of dye waste under visible light. Materials Today Communications, 2022, 30, 103091.	1.9	3
3	Plasmonic biosensors in medical applications. , 2022, , .		Ο
4	Multi-frequency analysis in a single square-wave chronoamperometric experiment. Electrochemistry Communications, 2021, 124, 106943.	4.7	8
5	Paper-based diagnostic platforms and devices. Current Opinion in Electrochemistry, 2021, 27, 100726.	4.8	14
6	Label-free detection of target proteins using peptide molecular wires as conductive supports. Sensors and Actuators B: Chemical, 2021, 345, 130416.	7.8	2
7	Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors. Sensors, 2020, 20, 6443.	3.8	42
8	Microfluidics-integrated biosensing platforms as emergency tools for on-site field detection of foodborne pathogens. TrAC - Trends in Analytical Chemistry, 2020, 125, 115831.	11.4	45
9	Fast decolourization of Indigo Carmine and Crystal Violet in aqueous environments through micellar catalysis. Separation and Purification Technology, 2019, 210, 698-709.	7.9	19
10	Peptide-based electrochemical biosensors. , 2019, , 277-306.		1
11	Early Detection of Growth Hormone Secretagogue Receptor Antagonists Exploiting Their Atypical Behavior in Competitive Assays. Analytical Chemistry, 2019, 91, 14812-14817.	6.5	1
12	Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays. Bioelectrochemistry, 2018, 120, 66-75.	4.6	72
13	Significance Testing and Multivariate Analysis of Datasets from Surface Plasmon Resonance and Surface Acoustic Wave Biosensors: Prediction and Assay Validation for Surface Binding of Large Analytes. Sensors, 2018, 18, 3541.	3.8	6
14	Building switchable peptide-architectures on gold/composite surfaces: New perspectives in electrochemical bioassays. Current Opinion in Electrochemistry, 2018, 12, 13-20.	4.8	12
15	Biomimetic Sensors Based on Molecularly Imprinted Interfaces. Comprehensive Analytical Chemistry, 2017, 77, 147-177.	1.3	9
16	Permanganate-assisted removal of PCR inhibitors during the DNA Chelex extraction from stained denim samples. International Journal of Legal Medicine, 2017, 131, 323-331.	2.2	2
17	SPR and SPR Imaging: Recent Trends in Developing Nanodevices for Detection and Real-Time Monitoring of Biomolecular Events. Sensors, 2016, 16, 870.	3.8	142
18	Feed-back action of nitrite in the oxidation of nitrophenols by bicarbonate-activated peroxide system. Applied Catalysis A: General, 2016, 516, 90-99.	4.3	8

Mihaela Puiu

#	Article	IF	CITATIONS
19	New Routes in the High-Throughput Screening of Toxic Proteins Using Immunochemical Tools. Advanced Sciences and Technologies for Security Applications, 2016, , 35-59.	0.5	0
20	Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats. Sensors, 2015, 15, 10511-10525.	3.8	29
21	A modular electrochemical peptide-based sensor for antibody detection. Chemical Communications, 2014, 50, 8962.	4.1	40
22	Kinetics of thermal inactivation of catalase in the presence of additives. Process Biochemistry, 2013, 48, 471-477.	3.7	10
23	Inactivation path during the copper (II) catalyzed synthesis of Questiomycin A from oxidation of 2-aminophenol. Applied Catalysis A: General, 2012, 447-448, 74-80.	4.3	12
24	Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess and Biosystems Engineering, 2012, 35, 1523-1530.	3.4	15
25	Kinetic approach of aflatoxin B1–acetylcholinesterase interaction: A tool for developing surface plasmon resonance biosensors. Analytical Biochemistry, 2012, 421, 587-594.	2.4	51
26	Detecting Operational Inactivation of Horseradish Peroxidase using an Isoconversional Method. Chemical Engineering and Technology, 2010, 33, 414-420.	1.5	9
27	Peroxidase-mediated oxidation of l-dopa: A kinetic approach. Biochemical Engineering Journal, 2010, 52, 248-254.	3.6	14
28	Oxidase–peroxidase reaction: kinetics of peroxidase-catalysed oxidation of 2-aminophenol. Bioprocess and Biosystems Engineering, 2008, 31, 579-586.	3.4	16
29	Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method. Biophysical Chemistry, 2008, 138, 50-54.	2.8	14
30	Influence of surfactants on the fading of malachite green. Open Chemistry, 2008, 6, 89-92.	1.9	12
31	Temperature and pH effects on the kinetics of 2-aminophenol auto-oxidation in aqueous solution. Open Chemistry, 2003, 1, 233-241.	1.9	7