Irene Murgia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3924770/publications.pdf Version: 2024-02-01

IDENE MUDCIA

#	Article	IF	CITATIONS
1	Plant iron nutrition: the long road from soil to seeds. Journal of Experimental Botany, 2022, 73, 1809-1824.	4.8	18
2	Network Topological Analysis for the Identification of Novel Hubs in Plant Nutrition. Frontiers in Plant Science, 2021, 12, 629013.	3.6	14
3	Formate dehydrogenase contributes to the early Arabidopsis thaliana responses against Xanthomonas campestris pv campestris infection. Physiological and Molecular Plant Pathology, 2021, 114, 101633.	2.5	5
4	cROStalk for Life: Uncovering ROS Signaling in Plants and Animal Systems, from Gametogenesis to Early Embryonic Development. Genes, 2021, 12, 525.	2.4	10
5	Plasticity, exudation and microbiome-association of the root system of Pellitory-of-the-wall plants grown in environments impaired in iron availability. Plant Physiology and Biochemistry, 2021, 168, 27-42.	5.8	3
6	Formate dehydrogenase takes part in molybdenum and iron homeostasis and affects dark-induced senescence in plants. Journal of Plant Interactions, 2020, 15, 386-397.	2.1	9
7	Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature Chemical Biology, 2018, 14, 442-450.	8.0	220
8	Iron-Requiring Enzymes in the Spotlight of Oxygen. Trends in Plant Science, 2018, 23, 874-882.	8.8	30
9	Molybdenum and iron mutually impact their homeostasis in cucumber (<i>Cucumis sativus</i>) plants. New Phytologist, 2017, 213, 1222-1241.	7.3	65
10	Iron Deficiency Prolongs Seed Dormancy in Arabidopsis Plants. Frontiers in Plant Science, 2017, 8, 2077.	3.6	15
11	Three-Dimensional Reconstruction, by TEM Tomography, of the Ultrastructural Modifications Occurring in Cucumis sativus L. Mitochondria under Fe Deficiency. PLoS ONE, 2015, 10, e0129141.	2.5	26
12	Analysis of the transgenerational iron deficiency stress memory in Arabidopsis thaliana plants. Frontiers in Plant Science, 2015, 6, 745.	3.6	22
13	Analysis of Arabidopsis thaliana atfer4-1, atfh and atfer4-1/atfh mutants uncovers frataxin and ferritin contributions to leaf ionome homeostasis. Plant Physiology and Biochemistry, 2015, 94, 65-72.	5.8	20
14	Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. Frontiers in Plant Science, 2013, 4, 316.	3.6	30
15	Searching iron sensors in plants by exploring the link among 2′-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency. Frontiers in Plant Science, 2013, 4, 169.	3.6	38
16	Biofortification: how can we exploit plant science and biotechnology to reduce micronutrient deficiencies?. Frontiers in Plant Science, 2013, 4, 429.	3.6	27
17	Biofortification for combating â€~hidden hunger' for iron. Trends in Plant Science, 2012, 17, 47-55.	8.8	131
18	Arabidopsis CYP82C4 expression is dependent on Fe availability and circadian rhythm, and correlates with genes involved in the early Fe deficiency response. Journal of Plant Physiology, 2011, 168, 894-902.	3.5	54

IRENE MURGIA

#	Article	IF	CITATIONS
19	Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well equipped team to preserve plant iron homeostasis. Plant Science, 2011, 181, 582-592.	3.6	76
20	ldentification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism. Plant Physiology and Biochemistry, 2011, 49, 520-529.	5.8	31
21	Knocking out of the mitochondrial AtFer4 ferritin does not alter response of Arabidopsis plants to abiotic stresses. Journal of Plant Physiology, 2010, 167, 453-460.	3.5	24
22	AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cells. Journal of Plant Physiology, 2010, 167, 1598-1605.	3.5	31
23	Mitochondrial iron metabolism in plants: frataxin comes into play. Plant and Soil, 2009, 325, 5-14.	3.7	12
24	The proton pump interactor (<i>Ppi</i>) gene family of <i>Arabidopsis thaliana</i> : expression pattern of <i>Ppi1</i> and characterisation of knockout mutants for <i>Ppi1</i> and <i>2</i> . Plant Biology, 2008, 10, 237-249.	3.8	14
25	Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 672-677.	7.1	298
26	Knockout of frataxin gene causes embryo lethality inArabidopsis. FEBS Letters, 2007, 581, 667-672.	2.8	54
27	Knock-out of ferritin AtFer1 causes earlier onset of age-dependent leaf senescence in Arabidopsis. Plant Physiology and Biochemistry, 2007, 45, 898-907.	5.8	44
28	An Iron-induced Nitric Oxide Burst Precedes Ubiquitin-dependent Protein Degradation for Arabidopsis AtFer1 Ferritin Gene Expression. Journal of Biological Chemistry, 2006, 281, 23579-23588.	3.4	167
29	Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances Paraquat-induced photooxidative stress and Nitric Oxide-induced cell death. Planta, 2005, 221, 757-765.	3.2	62
30	Evidence for the presence of ferritin in plant mitochondria. FEBS Journal, 2004, 271, 3657-3664.	0.2	93
31	Arabidopsis thalianaplants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant Journal, 2004, 38, 940-953.	5.7	284
32	Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. Journal of Plant Physiology, 2004, 161, 777-783.	3.5	107
33	Differential involvement of the IDRS cis -element in the developmental and environmental regulation of the AtFer1 ferritin gene from Arabidopsis. Planta, 2003, 217, 709-716.	3.2	56
34	The Functions of Nitric Oxide-Mediated Signaling and Changes in Gene Expression During the Hypersensitive Response. Antioxidants and Redox Signaling, 2003, 5, 33-41.	5.4	64
35	Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response. Plant Physiology and Biochemistry, 2002, 40, 605-610.	5.8	91
36	Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant Journal, 2002, 30, 521-528.	5.7	159

IRENE MURGIA

#	Article	IF	CITATIONS
37	A novel interaction partner for the C-terminus ofArabidopsis thalianaplasma membrane H+-ATPase (AHA1 isoform): site and mechanism of action on H+-ATPase activity differ from those of 14-3-3 proteins#. Plant Journal, 2002, 31, 487-497.	5.7	31
38	Plant ferritin accumulates in response to photoinhibition but its ectopic overexpression does not protect against photoinhibition. Plant Physiology and Biochemistry, 2001, 39, 797-805.	5.8	40
39	A non-destructive selection method for resistance to fusicoccin in Arabidopsis thaliana. Plant Cell Reports, 1998, 18, 255-259.	5.6	2
40	Wild-Type Strains ofDictyostelium discoideumCan Be Transformed Using a Novel Selection Cassette Driven by the Promoter of the Ribosomal V18 Gene. Plasmid, 1996, 36, 169-181.	1.4	26
41	A mutational analysis of Dictyostelium discoideum multicellular development. Microbiology (United) Tj ETQq1 1	0.784314 1.8	rg&T /Overlo
42	An actin-related protein fromDictyostelium discoideumis developmentallyregulated and associated with mitochondria. FEBS Letters, 1995, 360, 235-241.	2.8	19
43	Good or Bad? The Double Face of Iron in Plants. Frontiers for Young Minds, 0, 10, .	0.8	2