
Takashi Miyata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3924283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reversibly antigen-responsive hydrogel. Nature, 1999, 399, 766-769.	27.8	1,108
2	Biomolecule-sensitive hydrogels. Advanced Drug Delivery Reviews, 2002, 54, 79-98.	13.7	691
3	Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1190-1193.	7.1	210
4	Thermo-responsive gels that absorb moisture and ooze water. Nature Communications, 2018, 9, 2315.	12.8	197
5	Preparation of an Antigen-Sensitive Hydrogel Using Antigenâ [°] Antibody Bindings. Macromolecules, 1999, 32, 2082-2084.	4.8	169
6	Photoinduced Bending of Self-Assembled Azobenzene–Siloxane Hybrid. Journal of the American Chemical Society, 2015, 137, 15434-15440.	13.7	99
7	Pervaporation Characteristics of Organicâ^'Inorganic Hybrid Membranes Composed of Poly(vinyl) Tj ETQq1 1 C 38, 8440-8446.	.784314 rgl 4.8	3T /Overlock 86
8	Structural design of stimuliâ€responsive bioconjugated hydrogels that respond to a target antigen. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2144-2157.	2.1	65
9	Preparation of smart soft materials using molecular complexes. Polymer Journal, 2010, 42, 277-289.	2.7	65
10	Preparation of polydimethylsiloxane/polystyrene interpenetrating polymer network membranes and permeation of aqueous ethanol solutions through the membranes by pervaporation. Journal of Applied Polymer Science, 1996, 61, 1315-1324.	2.6	64
11	Microphase Separation in Graft Copolymer Membranes with Pendant Oligodimethylsiloxanes and Their Permselectivity for Aqueous Ethanol Solutions. Macromolecules, 1996, 29, 7787-7794.	4.8	45
12	Ethanol Permselectivity of Poly(dimethylsiloxane) Membranes Controlled by Simple Surface Modifications Using Polymer Additives. Macromolecules, 1997, 30, 5563-5565.	4.8	45
13	Pervaporation characteristics of methyl methacrylate-methacrylic acid copolymer membranes ionically crosslinked with metal ions for a benzene/cyclohexane mixture. Journal of Applied Polymer Science, 1999, 71, 233-241.	2.6	45
14	Characteristics of permeation and separation for propanol isomers through poly(vinyl alcohol) membranes containing cyclodextrin. Journal of Applied Polymer Science, 1994, 51, 2007-2014.	2.6	44
15	Surface Modification of Microphase-Separated Membranes by Fluorine-Containing Polymer Additive and Removal of Dilute Benzene in Water through These Membranes. Macromolecules, 2001, 34, 8026-8033.	4.8	44
16	Evapomeation characteristics of cross-linked quaternized chitosan membranes for the separation of an ethanol/water azeotrope. Macromolecular Chemistry and Physics, 2002, 203, 1162.	2.2	42
17	Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes. Carbohydrate Polymers, 2015, 120, 1-6.	10.2	42
18	QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix. Polymer Journal, 2016, 48, 525-532.	2.7	41

Τακάσηι Μιγάτα

#	Article	IF	CITATIONS
19	Characteristics of permeation and separation for aqueous ethanol solutions through methyl methacrylate-dimethylsiloxane graft copolymer membranes. Macromolecular Chemistry and Physics, 1995, 196, 1211-1220.	2.2	39
20	Synthesis of glucose-responsive bioconjugated gel particles using surfactant-free emulsion polymerization. Colloids and Surfaces B: Biointerfaces, 2012, 99, 74-81.	5.0	36
21	Responsive behavior of tumorâ€markerâ€imprinted hydrogels using macromolecular crossâ€linkers. Journal of Molecular Recognition, 2012, 25, 336-343.	2.1	36
22	Effects of Morphology of Multicomponent Polymer Membranes Containing Calixarene on Permselective Removal of Benzene from a Dilute Aqueous Solution of Benzene. Macromolecules, 2003, 36, 2041-2048.	4.8	35
23	Pervaporation characteristics of a benzoylchitosan membrane for benzene-cyclohexane mixtures. Macromolecular Chemistry and Physics, 1998, 199, 49-54.	2.2	34
24	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 927-939.	1.1	29
25	Conformationally Regulated Molecular Binding and Release of Molecularly Imprinted Polypeptide Hydrogels That Undergo Helix–Coil Transition. Macromolecules, 2017, 50, 2136-2144.	4.8	29
26	Characteristics of permeation and separation of xylene isomers through poly(vinyl alcohol) membranes containing cyclodextrin. Macromolecular Chemistry and Physics, 1996, 197, 2909-2921.	2.2	27
27	Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation. Carbohydrate Polymers, 2015, 134, 38-45.	10.2	23
28	Mechanical and responsive properties of temperature-responsive gels prepared via atom transfer radical polymerization. Polymer Chemistry, 2017, 8, 6050-6057.	3.9	23
29	Two types of fractal dimensions for phase separation in multicomponent polymer membranes. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1545-1550.	2.1	21
30	Organic-Inorganic Hybrid Membranes for Removal of Benzene from an Aqueous Solution by Pervaporation. Macromolecular Chemistry and Physics, 2005, 206, 473-483.	2.2	21
31	Water/Ethanol Selectivity of New Organic-Inorganic Hybrid Membranes Fabricated from Poly(vinyl) Tj ETQq1 1 0	.784314 r 2.2	gBT /Overloc
32	Permeation and separation of organic liquid mixtures through liquid-crystalline polymer networks. Angewandte Makromolekulare Chemie, 1996, 240, 241-250.	0.2	20
33	Biomolecularly stimuli-responsive tetra-poly(ethylene glycol) that undergoes sol–gel transition in response to a target biomolecule. Polymer Chemistry, 2017, 8, 6378-6385.	3.9	20
34	Controlled permeation of model drugs through a bioconjugated membrane with antigen–antibody complexes as reversible crosslinks. Polymer Journal, 2010, 42, 834-837.	2.7	19
35	Relationship between fractal microphase separation and permselectivity of block copolymer membranes containing poly(dimethylsiloxane). Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 584-589.	2.1	17
36	Rapid response of a poly(acrylamide) hydrogel having a semi-interpenetrating polymer network structure. Polymers for Advanced Technologies, 2006, 17, 794-797.	3.2	17

Τακάσηι Μιγάτα

#	Article	IF	CITATIONS
37	Structural Design of P(BMA-co-VTES)/TEOS Hybrid Membranes for Removal of Benzene from Water by Pervaporation. Macromolecular Chemistry and Physics, 2005, 206, 1638-1647.	2.2	15
38	Permeation and separation of binary organic mixtures through a liquid-crystalline polymer membrane. Macromolecular Chemistry and Physics, 1998, 199, 589-595.	2.2	13
39	Title is missing!. Cellulose, 1999, 6, 221-231.	4.9	13
40	Selective Removal of Dilute Benzene from Water by Various Cross-Linked Poly(dimethylsiloxane) Membranes Containingtert-Butylcalix[4]arene. Macromolecular Chemistry and Physics, 2005, 206, 2521-2529.	2.2	12
41	Photoresponsive behaviour of zwitterionic polymer particles with photodimerizable groups on their surfaces. Journal of Materials Chemistry B, 2022, 10, 2637-2648.	5.8	11
42	Reductively Responsive Gel Capsules Prepared Using a Water-Soluble Zwitterionic Block Copolymer Emulsifier. Langmuir, 2019, 35, 1413-1420.	3.5	10
43	Pervaporation characteristics for benzene/cyclohexane mixtures through benzoylcellulose membranes. Macromolecular Chemistry and Physics, 1999, 200, 1985-1990.	2.2	9
44	Design of molecule-responsive organic–inorganic hybrid nanoparticles bearing cyclodextrin as ligands. Polymer Journal, 2015, 47, 206-211.	2.7	9
45	Characteristics of permeation and separation of dimethyl acrylamide-methyl methacrylate random and graft copolymer membranes for a benzene/cyclohexane mixture. Polymer Bulletin, 1997, 39, 733-740.	3.3	7
46	Pervaporation properties of crosslinked poly(dimethylsiloxane) membranes for the removal of hydrocarbons from water. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2079-2090.	2.1	7
47	Preparation of molecularly imprinted hydrogel layer SPR sensor chips with lectin-recognition sites via SI-ATRP. Polymer Journal, 2018, 50, 261-269.	2.7	7
48	Self-Healing Lamellar Silsesquioxane Thin Films. ACS Applied Polymer Materials, 2021, 3, 4118-4126.	4.4	6
49	Design of molecularly imprinted hydrogels with thermoresponsive drug binding sites. Journal of Materials Chemistry B, 2022, 10, 6644-6654.	5.8	6
50	Weakly Acidic pH and Reduction Dual Stimuli-Responsive Gel Particles. Langmuir, 2021, 37, 11484-11492.	3.5	5
51	Amphiphilic Liquid Crystalline Polymer Micelles That Exhibit a Phase Transition at Body Temperature. ACS Applied Materials & Interfaces, 2022, 14, 31513-31524.	8.0	5
52	Permeation and Separation Characteristics of a Mixture of Benzene/Cyclohexane through Cellulose Alkyl Ester Membranes during Pervaporation. Macromolecular Chemistry and Physics, 2005, 206, 642-648.	2.2	4
53	Photoresponsive Gelation of Four-Armed Poly(ethylene glycol) with Photodimerizable Groups. Gels, 2022, 8, 183.	4.5	4
54	pH-controlled uphill transport of ammonium ions through polymer membranes with sulfonic acid groups. Angewandte Makromolekulare Chemie, 1996, 240, 251-261.	0.2	3

Τακάσηι Μιγάτα

#	Article	IF	CITATIONS
55	Photoresponsive Polymer Films with Directly Micropatternable Surfaces Based on the Change in Free Volume by Photoâ€Crosslinking. Advanced Materials Interfaces, 2022, 9, .	3.7	3
56	Core–shell microgels having zwitterionic hydrogel core and temperature-responsive shell prepared <i>via</i> inverse miniemulsion RAFT polymerization. Polymer Chemistry, 2022, 13, 3489-3497.	3.9	3
57	Fluorescence resonance energy transfer by quencher adsorption into hydrogels containing fluorophores. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3245-3252.	2.1	2
58	Synthesis of novel nucleobase-terminated organosilane and its self-assembly on a substrate. Polymer Journal, 2012, 44, 625-631.	2.7	2
59	Improvement of Selectivities of Microphase-Separated Membranes for the Removal of Volatile Organic Compounds. ACS Symposium Series, 2004, , 411-426.	0.5	1
60	Preparation of polydimethylsiloxane/polystyrene interpenetrating polymer network membranes and permeation of aqueous ethanol solutions through the membranes by pervaporation. , 1996, 61, 1315.		1
61	Two types of fractal dimensions for phase separation in multicomponent polymer membranes. , 1999, 37, 1545.		1
62	Pervaporation characteristics of a benzoylchitosan membrane for benzene-cyclohexane mixtures. , 1998, 199, 49.		1
63	Pervaporation characteristics of a benzoylchitosan membrane for benzene-cyclohexane mixtures. Macromolecular Chemistry and Physics, 1998, 199, 49-54.	2.2	1
64	Development of Smart Materials That Respond to Specific Molecules. Membrane, 2005, 30, 138-146.	0.0	0
65	Designs of Stimuli-responsive Gels Using Dynamic Crosslinks and Their Applications. Membrane, 2016, 41, 226-232.	0.0	0
66	Photoresponsive Polymer Films with Directly Micropatternable Surfaces Based on the Change in Free Volume by Photoâ€Crosslinking (Adv. Mater. Interfaces 9/2022). Advanced Materials Interfaces, 2022, 9, .	3.7	0