
Song-Song Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3924244/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Research, 2022, 15, 2905-2912.	10.4	7
2	Generation of Strong Basicity in Metal–Organic Frameworks: How Do Coordination Solvents Matter?. ACS Applied Materials & Interfaces, 2022, 14, 8058-8065.	8.0	6
3	Generating strongly basic sites on magnetic nano-stirring bars: Multifunctional integrated catalysts for transesterification reaction. Science China Materials, 2022, 65, 2721-2728.	6.3	3
4	Low-temperature conversion of base precursor KNO3 on core–shell structured Fe3O4@C: Fabrication of magnetically responsive solid strong bases. Catalysis Today, 2021, 374, 200-207.	4.4	5
5	Hybridization with Ti ₃ C ₂ T <i>_x</i> MXene: An Effective Approach to Boost the Hydrothermal Stability and Catalytic Performance of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 1380-1387.	4.0	17
6	Breathing Metal–Organic Polyhedra Controlled by Light for Carbon Dioxide Capture and Liberation. CCS Chemistry, 2021, 3, 1659-1668.	7.8	28
7	Controllable CO ₂ Capture in Metal–Organic Frameworks: Making Targeted Active Sites Respond to Light. Industrial & Engineering Chemistry Research, 2020, 59, 21894-21900.	3.7	18
8	Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11, 3206.	12.8	105
9	Fabrication of solid strong bases at decreased temperature by doping low-valence Cr3+ into supports. Applied Catalysis A: General, 2019, 584, 117153.	4.3	6
10	Significant Decrease in Activation Temperature for the Generation of Strong Basicity: A Strategy of Endowing Supports with Reducibility. Inorganic Chemistry, 2019, 58, 8003-8011.	4.0	9
11	N-doped porous carbons derived from a polymer precursor with a record-high N content: Efficient adsorbents for CO2 capture. Chemical Engineering Journal, 2019, 372, 656-664.	12.7	71
12	Fabrication of N-doped porous carbons for enhanced CO2 capture: Rational design of an ammoniated polymer precursor. Chemical Engineering Journal, 2019, 369, 170-179.	12.7	54
13	Potassium-incorporated mesoporous carbons: strong solid bases with enhanced catalytic activity and stability. Catalysis Science and Technology, 2018, 8, 2794-2801.	4.1	14
14	One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol. Microporous and Mesoporous Materials, 2018, 261, 44-50.	4.4	25
15	Fabrication of ordered mesoporous solid super base with high thermal stability from mesoporous carbons. Microporous and Mesoporous Materials, 2017, 242, 18-24.	4.4	33