Hong Nhan Nong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3924176/publications.pdf

Version: 2024-02-01

20 4,597 15 20 papers citations h-index 567281

21 21 21 21 5112

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Modular Design of Highly Active Unitized Reversible Fuel Cell Electrocatalysts. ACS Energy Letters, 2021, 6, 177-183.	17.4	22
2	Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nature Materials, 2020, 19, 77-85.	27.5	400
3	The Role of Surface Hydroxylation, Lattice Vacancies and Bond Covalency in the Electrochemical Oxidation of Water (OER) on Ni-Depleted Iridium Oxide Catalysts. Zeitschrift Fur Physikalische Chemie, 2020, 234, 787-812.	2.8	12
4	Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature, 2020, 587, 408-413.	27.8	405
5	Electroactivation-induced IrNi nanoparticles under different pH conditions for neutral water oxidation. Nanoscale, 2020, 12, 14903-14910.	5.6	14
6	Carbon-Supported IrCoO nanoparticles as an efficient and stable OER electrocatalyst for practicable CO2 electrolysis. Applied Catalysis B: Environmental, 2020, 269, 118820.	20.2	54
7	Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER). ACS Catalysis, 2019, 9, 6653-6663.	11.2	136
8	Metallic Iridium Thin-Films as Model Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)â€"Morphology and Activity. Surfaces, 2018, 1, 151-164.	2.3	8
9	A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nature Catalysis, 2018, 1, 841-851.	34.4	424
10	Impact of Carbon Support Functionalization on the Electrochemical Stability of Pt Fuel Cell Catalysts. Chemistry of Materials, 2018, 30, 7287-7295.	6.7	73
11	Electrocatalytic Oxygen Evolution Reaction in Acidic Environments – Reaction Mechanisms and Catalysts. Advanced Energy Materials, 2017, 7, 1601275.	19.5	847
12	Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO _{<i>x</i>} Nanoparticle Catalysts during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 12552-12563.	13.7	451
13	Oxideâ€Supported IrNiO _{<i>x</i>} Coreâ€"Shell Particles as Efficient, Costâ€Effective, and Stable Catalysts for Electrochemical Water Splitting. Angewandte Chemie, 2015, 127, 3018-3022.	2.0	44
14	Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chemical Science, 2015, 6, 3321-3328.	7.4	332
15	Oxideâ€Supported IrNiO _{<i>x</i>} Coreâ€"Shell Particles as Efficient, Costâ€Effective, and Stable Catalysts for Electrochemical Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 2975-2979.	13.8	384
16	Preparation of Mesoporous Sbâ€, Fâ€, and Inâ€Doped SnO ₂ Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells. Advanced Functional Materials, 2015, 25, 1074-1081.	14.9	127
17	Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER). Journal of the American Chemical Society, 2015, 137, 13031-13040.	13.7	565
18	IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chemical Science, 2014, 5, 2955-2963.	7.4	278

#	Article	IF	CITATIONS
19	Esterification of 2-keto-l-gulonic acid catalyzed by a solid heteropoly acid. Catalysis Science and Technology, 2013, 3, 699-705.	4.1	15
20	Operando Studies of Hole-Doped IrNiOx core-shell electrocatalysts for Water Oxidation in acidic Environment. , 0, , .		О