Carlos Palomino Cabello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3923599/publications.pdf

Version: 2024-02-01

45 papers 1,377 citations

257450 24 h-index 330143 37 g-index

46 all docs

46 docs citations

46 times ranked

1845 citing authors

#	Article	IF	Citations
1	Zinc/Iron mixed-metal MOF-74 derived magnetic carbon nanorods for the enhanced removal of organic pollutants from water. Chemical Engineering Journal, 2022, 428, 131147.	12.7	45
2	Catalytic activity and stability of sulfonic-functionalized UiO-66 and MIL-101 materials in friedel-crafts acylation reaction. Catalysis Today, 2022, 390-391, 258-264.	4.4	7
3	Comparison of photocatalytic activity of \hat{l}_{\pm} Fe2O3-TiO2/P on the removal of pollutants on liquid and gaseous phase. Journal of Environmental Chemical Engineering, 2021, 9, 104828.	6.7	11
4	Scientific Activities for the Engagement of Undergraduate Students in the Separation and Recycling of Waste. Journal of Chemical Education, 2021, 98, 454-460.	2.3	5
5	MIL-100(Fe)-derived carbon sponge as high-performance material for oil/water separation. Separation and Purification Technology, 2021, 257, 117951.	7.9	32
6	STUDENTS PROBLEM DESIGN AS A TOOL FOR AUTONOMOUS LEARNING AND FOR STIMULATING CREATIVITY. , 2021, , .		0
7	Amino-grafted Cu and Sc Metal-Organic Frameworks involved in the green synthesis of 2-amino-4H-chromenes. Mechanistic understanding. Microporous and Mesoporous Materials, 2021, 323, 111232.	4.4	6
8	Silver-functionalized UiO-66 metal-organic framework-coated 3D printed device for the removal of radioactive iodine from wastewaters. Applied Materials Today, 2021, 24, 101130.	4.3	6
9	TiO2 derived from NTU-9 metal-organic framework as highly efficient photocatalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115424.	3.5	3
10	BrÃ, nsted acidity of H-[Ga]-ZSM-5 zeolites as determined by variable-temperature IR spectroscopy. Catalysis Today, 2020, 345, 71-79.	4.4	3
11	Metal–Organic Framework@Carbon Hybrid Magnetic Material as an Efficient Adsorbent for Pollutant Extraction. ACS Applied Materials & Interfaces, 2020, 12, 6419-6425.	8.0	44
12	Iron metal-organic framework supported in a polymeric membrane for solid-phase extraction of anti-inflammatory drugs. Analytica Chimica Acta, 2020, 1136, 157-167.	5.4	18
13	Determination of benzomercaptans in environmental complex samples by combining zeolitic imidazolate framework-8-based solid-phase extraction and high-performance liquid chromatography with UV detection. Journal of Chromatography A, 2020, 1631, 461580.	3.7	13
14	Magnetic porous carbons derived from cobalt(<scp>ii</scp>)-based metalâ€"organic frameworks for the solid-phase extraction of sulfonamides. Dalton Transactions, 2020, 49, 8959-8966.	3.3	20
15	Coupled heterogeneous photocatalysis using a P-TiO2-αFe2O3 catalyst and K2S2O8 for the efficient degradation of a sulfonamide mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112485.	3.9	18
16	KNOWLEDGE PILLS FOR THE LEARNING OF SAFETY RULES AND BASIC LABORATORY OPERATIONS IN THE MASTER'S DEGREE IN CHEMICAL SCIENCE AND TECHNOLOGY SUBJECTS. , 2020, , .		0
17	Automated on-line monitoring of the TiO2-based photocatalytic degradation of dimethyl phthalate and diethyl phthalate. Photochemical and Photobiological Sciences, 2019, 18, 863-870.	2.9	18
18	Carbon composite membrane derived from MIL-125-NH2 MOF for the enhanced extraction of emerging pollutants. Chemosphere, 2019, 231, 510-517.	8.2	25

#	Article	IF	CITATIONS
19	Metal–organic framework mixed-matrix coatings on 3D printed devices. Applied Materials Today, 2019, 16, 21-27.	4.3	54
20	Hyperporous carbon-coated 3D printed devices. Applied Materials Today, 2019, 14, 29-34.	4.3	16
21	Immobilization of Metal–Organic Frameworks on Supports for Sample Preparation and Chromatographic Separation. Chromatographia, 2019, 82, 361-375.	1.3	33
22	Determination of phthalate acid esters plasticizers in polyethylene terephthalate bottles and its correlation with some physicochemical properties. Polymer Testing, 2018, 68, 87-94.	4.8	39
23	UiO-66 derived etched carbon/polymer membranes: High-performance supports for the extraction of organic pollutants from water. Chemical Engineering Journal, 2018, 346, 85-93.	12.7	56
24	Automated solidâ€phase extraction of phenolic acids using layered double hydroxide–alumina–polymer disks. Journal of Separation Science, 2018, 41, 2012-2019.	2.5	17
25	Emerging materials for sample preparation. Journal of Separation Science, 2018, 41, 262-287.	2.5	33
26	Frontispiece: Nanoparticle@Metal-Organic Frameworks as a Template for Hierarchical Porous Carbon Sponges. Chemistry - A European Journal, 2018, 24, .	3.3	0
27	Nanoparticle@Metalâ€Organic Frameworks as a Template for Hierarchical Porous Carbon Sponges. Chemistry - A European Journal, 2018, 24, 13450-13456.	3.3	6
28	In-syringe dispersive $\hat{1}/4$ -SPE of estrogens using magnetic carbon microparticles obtained from zeolitic imidazolate frameworks. Analytical and Bioanalytical Chemistry, 2017, 409, 225-234.	3.7	30
29	Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. Journal of Chromatography A, 2017, 1488, 1-9.	3.7	61
30	Surfactant-directed mesoporous zeolites with enhanced catalytic activity in tetrahydropyranylation of alcohols: Effect of framework type and morphology. Applied Catalysis A: General, 2017, 537, 24-32.	4.3	23
31	Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC - Trends in Analytical Chemistry, 2017, 90, 142-152.	11.4	249
32	Superior Activity of Isomorphously Substituted MOFs with MILâ€100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. ChemPlusChem, 2017, 82, 152-159.	2.8	26
33	Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta, 2017, 164, 348-354.	5 . 5	38
34	Metal–Organic Frameworks Mâ€MOFâ€74 and Mâ€MILâ€100: Comparison of Textural, Acidic, and Catalytic Properties. ChemPlusChem, 2016, 81, 828-835.	2.8	28
35	Metal Oxide Assisted Preparation of Core–Shell Beads with Dense Metal–Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants. Chemistry - A European Journal, 2016, 22, 11770-11777.	3.3	24
36	Submicrometric Magnetic Nanoporous Carbons Derived from Metal–Organic Frameworks Enabling Automated Electromagnet-Assisted Online Solid-Phase Extraction. Analytical Chemistry, 2016, 88, 6990-6995.	6.5	43

#	Article	IF	CITATIONS
37	Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic Metal–Organic Frameworks. Analytical Chemistry, 2015, 87, 7545-7549.	6.5	75
38	A rapid microwave-assisted synthesis of a sodium–cadmium metal–organic framework having improved performance as a CO ₂ adsorbent for CCS. Dalton Transactions, 2015, 44, 9955-9963.	3.3	35
39	Zeolitic imidazolate framework dispersions for the fast and highly efficient extraction of organic micropollutants. RSC Advances, 2015, 5, 28203-28210.	3.6	34
40	Enhanced CO ₂ adsorption capacity of amine-functionalized MIL-100(Cr) metal–organic frameworks. CrystEngComm, 2015, 17, 430-437.	2.6	60
41	Carbon dioxide adsorption on MIL-100(M) (M=Cr, V, Sc) metal–organic frameworks: IR spectroscopic and thermodynamic studies. Microporous and Mesoporous Materials, 2014, 190, 234-239.	4.4	38
42	Infrared spectroscopic and thermodynamic study on hydrogen adsorption on the metal organic framework MIL-100(Sc). Chemical Physics Letters, 2012, 521, 104-106.	2.6	16
43	Enthalpy–Entropy Correlation for Hydrogen Adsorption on MOFs: Variableâ€Temperature FTIR Study of Hydrogen Adsorption on MILâ€100(Cr) and MILâ€101(Cr). European Journal of Inorganic Chemistry, 2011, 2011, 1703-1708.	2.0	24
44	Thermodynamics of Hydrogen Adsorption on Metalâ€Organic Frameworks. ChemPhysChem, 2010, 11, 3237-3242.	2.1	45
45	Inside Cover: Thermodynamics of Hydrogen Adsorption on Metal-Organic Frameworks (ChemPhysChem) Tj ETQq	1 1 0.784	314 rgBT /O