List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3923030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amino acids and its pharmaceutical applications: A mini review. International Journal of Pharmaceutics, 2022, 613, 121375.	5.2	20
2	Study and development of microemulsion formulations to increase the permeability of acyclovir. Journal of Molecular Liquids, 2022, 348, 118408.	4.9	8
3	Insights into the ethanol solvate form of clarithromycin. Journal of Molecular Structure, 2022, 1264, 133170.	3.6	0
4	Enhanced dissolution profiles of glibenclamide with amino acids using a cogrinding method. Materials Today Communications, 2021, 26, 102126.	1.9	2
5	Structural, physicochemical and biological characterization of chloramphenicol multicomponent complexes. Journal of Molecular Liquids, 2021, 331, 115761.	4.9	9
6	Cyclodextrin Multicomponent Complexes: Pharmaceutical Applications. Pharmaceutics, 2021, 13, 1099.	4.5	41
7	Binary systems of albendazole desmotropes with amino-acids: Experimental and theoretical studies. Journal of Molecular Liquids, 2021, 340, 117282.	4.9	1
8	Improved Activity of Rifampicin Against Biofilms of Staphylococcus aureus by Multicomponent Complexation. AAPS PharmSciTech, 2020, 21, 163.	3.3	7
9	Evaluating ternary systems with oligosaccharides as a strategy to improve the biopharmaceutical properties of furosemide. Materials Science and Engineering C, 2020, 111, 110793.	7.3	2
10	Innovative technological systems to optimize the delivery and therapeutic activity of antimicrobial drugs. , 2020, , 105-139.		1
11	Simultaneous improvement of ketoconazole solubility, antifungal and antibiofilm activity by multicomponent complexation. Therapeutic Delivery, 2020, 11, 701-712.	2.2	6
12	β-cyclodextrin complexation as an approach to enhance the biopharmaceutical properties of Norfloxacin B Hydrate. Carbohydrate Research, 2019, 485, 107818.	2.3	11
13	Investigating a Soluble Pharmaceutical Salt: Albendazole Hydrochloride. Crystal Growth and Design, 2019, 19, 4538-4545.	3.0	14
14	Furosemide:Triethanolamine Salt as a Strategy To Improve the Biopharmaceutical Properties and Photostability of the Drug. Crystal Growth and Design, 2019, 19, 2060-2068.	3.0	14
15	Influence of proline and β-Cyclodextrin in ketoconazole physicochemical and microbiological performance. Journal of Molecular Structure, 2019, 1176, 470-477.	3.6	10
16	Inclusion complexes of β-cyclodextrin and polymorphs of mebendazole: Physicochemical characterization. European Journal of Pharmaceutical Sciences, 2019, 127, 330-338.	4.0	13
17	Synthesis and characterization of supramolecular systems containing nifedipine, β-cyclodextrin and aspartic acid. Carbohydrate Polymers, 2019, 205, 480-487.	10.2	16
18	Improving Properties of Albendazole Desmotropes by Supramolecular Systems with Maltodextrin and Glutamic Acid. AAPS PharmSciTech, 2018, 19, 1468-1476.	3.3	9

#	Article	IF	CITATIONS
19	Artificial Lipid Membrane Permeability Method for Predicting Intestinal Drug Transport: Probing the Determining Step in the Oral Absorption of Sulfadiazine; Influence of the Formation of Binary and Ternary Complexes with Cyclodextrins. AAPS PharmSciTech, 2018, 19, 1437-1447.	3.3	8
20	Cross-linked hyaluronan films loaded with acetazolamide–cyclodextrin–triethanolamine complexes for glaucoma treatment. Therapeutic Delivery, 2018, 9, 205-220.	2.2	9
21	Characterization of systems with amino-acids and oligosaccharides as modifiers of biopharmaceutical properties of furosemide. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 143-150.	2.8	14
22	Diloxanide furoate binary complexes with β-, methyl-β-, and hydroxypropyl-β-cyclodextrins: inclusion mode, characterization in solution and in solid state and <i>in vitro</i> dissolution studies. Pharmaceutical Development and Technology, 2018, 23, 723-731.	2.4	4
23	Binary and ternary complexes of norfloxacin to improve the solubility of the active pharmaceutical ingredient. Therapeutic Delivery, 2018, 9, 639-652.	2.2	7
24	Technological delivery systems to improve biopharmaceutical properties. , 2018, , 253-299.		7
25	Improving the Stability and the Pharmaceutical Properties of Norfloxacin Form C Through Binary Complexes with β-Cyclodextrin. AAPS PharmSciTech, 2018, 19, 2255-2263.	3.3	11
26	Effect of Complexes and Microemulsions on the Permeability of Drugs: Determination Using a New Biomimetic Artificial Membrane. AAPS PharmSciTech, 2018, 19, 2629-2638.	3.3	3
27	Toward novel antiparasitic formulations: Complexes of Albendazole desmotropes and β-cyclodextrin. Carbohydrate Polymers, 2017, 164, 379-385.	10.2	15
28	Drug release profiles of modified MCM-41 with superparamagnetic behavior correlated with the employed synthesis method. Materials Science and Engineering C, 2017, 78, 674-681.	7.3	21
29	Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress. AAPS PharmSciTech, 2017, 18, 2910-2918.	3.3	13
30	Liposomes containing cyclodextrins or meglumine to solubilize and improve the bioavailability of poorly soluble drugs. Journal of Molecular Liquids, 2017, 229, 106-113.	4.9	28
31	Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin. Carbohydrate Polymers, 2016, 152, 598-604.	10.2	10
32	Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex. Carbohydrate Polymers, 2016, 152, 672-678.	10.2	37
33	Interaction pathways of specific co-solvents with hydroxypropyl-β-cyclodextrin inclusion complexes with benznidazole in liquid and solid phase. Journal of Molecular Liquids, 2016, 223, 350-359.	4.9	23
34	Targeted chitosan-based bionanocomposites for controlled oral mucosal delivery of chlorhexidine. International Journal of Pharmaceutics, 2016, 509, 408-418.	5.2	43
35	Supramolecular aggregates of oligosaccharides with co-solvents in ternary systems for the solubilizing approach of triamcinolone. Carbohydrate Polymers, 2016, 151, 1040-1051.	10.2	10
36	Ternary complexation of benzoic acid with Î ² -cyclodextrin and aminoacids. Experimental and theoretical studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 33-48.	1.6	16

#	Article	IF	CITATIONS
37	Cyclodextrin and Meglumine-Based Microemulsions as a Poorly Water-Soluble Drug Delivery System. Journal of Pharmaceutical Sciences, 2016, 105, 2703-2711.	3.3	17
38	Nanostructured Lipid Carriers as a Strategy to Improve the <i>In Vitro</i> Schistosomiasis Activity of Praziquantel. Journal of Nanoscience and Nanotechnology, 2015, 15, 761-772.	0.9	31
39	Structural and dynamic characterization of solid furosemide polymorphs by NQR and NMR methods. Chemical Physics Letters, 2015, 641, 163-168.	2.6	3
40	Development and Characterization of a Biocompatible Soybean Oil-Based Microemulsion for the Delivery of Poorly Water-Soluble Drugs. Journal of Pharmaceutical Sciences, 2015, 104, 3535-3543.	3.3	22
41	Investigating Albendazole Desmotropes by Solid-State NMR Spectroscopy. Molecular Pharmaceutics, 2015, 12, 731-741.	4.6	42
42	RP-HPLC method development for the simultaneous determination of timolol maleate and human serum albumin in albumin nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2015, 111, 186-189.	2.8	19
43	Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate ROS production. Carbohydrate Polymers, 2015, 121, 320-327.	10.2	52
44	Influence of β-cyclodextrin on the Properties of Norfloxacin Form A. AAPS PharmSciTech, 2015, 16, 683-691.	3.3	16
45	Intestinal uptake and toxicity evaluation of acetazolamide and its multicomponent complexes with hidroxypropyl-β-cyclodextrin in rats. International Journal of Pharmaceutics, 2015, 478, 258-267.	5.2	11
46	Triethanolamine Stabilization of Methotrexate-β-Cyclodextrin Interactions in Ternary Complexes. International Journal of Molecular Sciences, 2014, 15, 17077-17099.	4.1	38
47	Characterization, inclusion mode, phase-solubility andin vitrorelease studies of inclusion binary complexes with cyclodextrins and meglumine using sulfamerazine as model drug. Drug Development and Industrial Pharmacy, 2014, 40, 919-928.	2.0	23
48	Improving furosemide polymorphs properties through supramolecular complexes of β-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 2014, 95, 139-145.	2.8	30
49	Solubility and release modulation effect of sulfamerazine ternary complexes with cyclodextrins and meglumine. Journal of Pharmaceutical and Biomedical Analysis, 2014, 100, 64-73.	2.8	20
50	Increasing Doxycycline Hyclate Photostability by Complexation with β-Cyclodextrin. AAPS PharmSciTech, 2014, 15, 1209-1217.	3.3	39
51	Supramolecular complexes of maltodextrin and furosemide polymorphs: a new approach for delivery systems. Carbohydrate Polymers, 2013, 94, 292-300.	10.2	32
52	Insights into Novel Supramolecular Complexes of Two Solid Forms of Norfloxacin and β-Cyclodextrin. Journal of Pharmaceutical Sciences, 2013, 102, 3717-3724.	3.3	30
53	Host–guest interactions between benznidazole and beta-cyclodextrin in multicomponent complex systems involving hydrophilic polymers and triethanolamine in aqueous solution. Journal of Molecular Liquids, 2013, 186, 147-156.	4.9	35
54	Characterization, dissolution and in vivo evaluation of solid acetazolamide complexes. Carbohydrate Polymers, 2013, 98, 380-390.	10.2	21

#	Article	IF	CITATIONS
55	Binding of Sulfamethazine to β-cyclodextrin and Methyl-β-cyclodextrin. AAPS PharmSciTech, 2013, 14, 727-735.	3.3	22
56	Characterization of the Hydrochlorothiazide: β-Cyclodextrin Inclusion Complex. Experimental and Theoretical Methods. Journal of Physical Chemistry B, 2013, 117, 206-217.	2.6	20
57	Ibuprofen-Maltodextrin Interaction: Study of Enantiomeric Recognition and Complex Characterization. Pharmacology & Pharmacy, 2013, 04, 18-30.	0.7	13
58	Interaction of sulfadiazine with cyclodextrins in aqueous solution and solid state. Carbohydrate Polymers, 2012, 87, 1980-1988.	10.2	27
59	Studies of pilocarpine:carbomer intermolecular interactions. International Journal of Pharmaceutics, 2012, 427, 252-259.	5.2	18
60	Sulfamethoxazole:hydroxypropyl-β-cyclodextrin complex: preparation and characterization. Journal of Pharmaceutical and Biomedical Analysis, 2012, 63, 74-79.	2.8	50
61	Enalapril:Î ² -CD complex: Stability enhancement in solid state. Carbohydrate Polymers, 2011, 86, 716-721.	10.2	22
62	Complex formation of chlorhexidine gluconate with hydroxypropyl-β-cyclodextrin (HPβCD) by proton nuclear magnetic resonance spectroscopy (1H NMR). Carbohydrate Research, 2011, 346, 1037-1046.	2.3	12
63	Development of HPLC and UV spectrophotometric methods for the determination of ascorbic acid using hydroxypropyl-î²-cyclodextrin and triethanolamine as photostabilizing agents. Analytica Chimica Acta, 2010, 659, 159-166.	5.4	39
64	Complexation of Sulfonamides With β-Cyclodextrin Studied by Experimental and Theoretical Methods. Journal of Pharmaceutical Sciences, 2010, 99, 3166-3176.	3.3	32
65	Studies on trimethoprim:hydroxypropyl-β-cyclodextrin: aggregate and complex formation. Carbohydrate Research, 2010, 345, 2550-2556.	2.3	56
66	Synthesis and characterization of binary and ternary complexes of diclofenac with a methyl-β-CD and monoethanolamine and in vitro transdermal evaluation. European Journal of Medicinal Chemistry, 2010, 45, 4079-4088.	5.5	18
67	Promising complexes of acetazolamide for topical ocular administration. Expert Opinion on Drug Delivery, 2010, 7, 943-953.	5.0	16
68	An efficient ternary complex of acetazolamide with HP-ß-CD and TEA for topical ocular administration. Journal of Controlled Release, 2009, 138, 24-31.	9.9	56
69	Synthesis, characterization and in vitro release studies of a new acetazolamide–HP-β-CD–TEA inclusion complex. European Journal of Medicinal Chemistry, 2008, 43, 464-470.	5.5	58
70	Specific binding capacity of β-cyclodextrin with cis and trans enalapril: Physicochemical characterization and structural studies by molecular modeling. Bioorganic and Medicinal Chemistry, 2008, 16, 8403-8412.	3.0	18
71	Ternary Complexes of Flurbiprofen with HP-ß-CD and Ethanolamines Characterization and Transdermal Delivery. Drug Development and Industrial Pharmacy, 2007, 33, 311-326.	2.0	19
72	HPLC method for the determination of nystatin in saliva for application in clinical studies. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 526-530.	2.8	23

#	Article	IF	CITATIONS
73	Study of ascorbic acid interaction with hydroxypropyl-β-cyclodextrin and triethanolamine, separately and in combination. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 536-545.	2.8	62
74	Quantitative analysis of enalapril by 1H NMR spectroscopy in tablets. Journal of Pharmaceutical and Biomedical Analysis, 2005, 37, 627-630.	2.8	25
75	Thermal Analysis and Spectroscopic Characterization of Interactions Between a Naphthoquinone Derivative with HP-Î ² -CD or PVP. Pharmaceutical Development and Technology, 2002, 7, 381-390.	2.4	6
76	Second derivative spectrophotometric determination of trimethoprime and sulfamethoxazole in the presence of hydroxypropyl-β-cyclodextrin (HP-β-CD). Journal of Pharmaceutical and Biomedical Analysis, 2002, 29, 51-59.	2.8	26
77	Determination of the Formation Constant of the Inclusion Complex from a Naphthoquinone. Molecules, 2000, 5, 510-511.	3.8	0
78	Preparation and Characterization of Solid Complexes of Naphtoquinone and Hydroxypropyl-b-Cyclodextrin. Molecules, 2000, 5, 342-344.	3.8	4
79	Solubilization of naphthoquinones by complexation with hydroxypropyl-β-cyclodextrin. International Journal of Pharmaceutics, 1997, 159, 13-18.	5.2	21
80	High Performance Liquid Chromatography of Isoxazolyl-Naphthoquinones: A Comparison Between Experimental and Theoretical Lipophilicity. Journal of Liquid Chromatography and Related Technologies, 1996, 19, 1947-1956.	1.0	2
81	Isoxazoles. 8. Preformulation Studies of an Isoxazolylnaphthoquinone Derivative. Journal of Pharmaceutical Sciences, 1994, 83, 336-338.	3.3	4
82	Isoxazoles. VII: Hydrolysis of 4-Methyl- 5-isoxazolylnaphthoquinone Derivatives in Aqueous Solutions. Journal of Pharmaceutical Sciences, 1991, 80, 573-577.	3.3	8
83	Isoxazoles VI: Aspects of the Chemical Stability of a New Naphthoquinone-Amine in Acidic Aqueous Solution. Journal of Pharmaceutical Sciences, 1990, 79, 754-757.	3.3	7
84	Isoxazoles V: Chemical Stability of Diisoxazolylnaphthoquinone in Aqueous Solution. Journal of Pharmaceutical Sciences, 1989, 78, 408-412.	3.3	9
85	Pharmaceutical Crystals: Development, Optimization, Characterization and Biopharmaceutical Aspects. , 0, , .		0