Lin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3922126/publications.pdf

Version: 2024-02-01

201674 144013 3,365 62 27 57 citations h-index g-index papers 63 63 63 4666 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Plexcitonic strong coupling: unique features, applications, and challenges. Journal Physics D: Applied Physics, 2022, 55, 203002.	2.8	31
2	Unveiling atom-photon quasi-bound states in hybrid plasmonic-photonic cavity. Nanophotonics, 2022, 11, 3307-3317.	6.0	7
3	Empowering magnetic strong coupling and its application for nonlinear refractive index sensing. Nano Research, 2022, 15, 7604-7613.	10.4	3
4	Control of Plexcitonic Strong Coupling via Substrateâ€Mediated Hotspot Nanoengineering. Advanced Optical Materials, 2022, 10, .	7.3	6
5	Frequency conversion in nano-waveguides using bound-state-in-continuum. Optics Letters, 2021, 46, 242.	3.3	4
6	Electron dynamics in plasmons. Nanoscale, 2021, 13, 2801-2810.	5.6	7
7	Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications. Applied Physics Letters, 2021, 118, .	3.3	21
8	Suppressing decoherence in quantum plasmonic systems by the spectral-hole-burning effect. Physical Review A, 2021, 103, .	2.5	3
9	Lithium coordination and diffusion coefficients of PEGylated ionic liquid and lithium salt blends: A molecular dynamics simulation study. Journal of Molecular Liquids, 2021, 331, 115694.	4.9	9
10	Integrating lattice and gap plasmonic modes to construct dual-mode metasurfaces for enhancing light–matter interaction. Science China Materials, 2021, 64, 3007-3016.	6.3	14
11	Enhanced photon emission from free electron excitation of a nanowell. APL Photonics, 2021, 6, .	5.7	3
12	Ultrasensitive Optical Temperature Transducers Based on Surface Plasmon Resonance Enhanced Composited Goos-HÃ ¤ chen and Imbert-Fedorov Shifts. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	2.9	21
13	Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. Nano Letters, 2021, 21, 8979-8986.	9.1	41
14	Plasmon-Enhanced Resonant Photoemission from Metal Surfaces Coated with Ultrathin Dielectric. , 2021, , .		0
15	Ultrastrong coupling in single plexcitonic nanocubes. Nanophotonics, 2020, 9, 257-266.	6.0	19
16	Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems. Nano Letters, 2020, 20, 4645-4652.	9.1	16
17	Plasmon-Enhanced Resonant Photoemission Using Atomically Thick Dielectric Coatings. ACS Nano, 2020, 14, 8806-8815.	14.6	27
18	Particle simulation of plasmons. Nanophotonics, 2020, 9, 3303-3313.	6.0	9

#	Article	IF	CITATIONS
19	Optical signatures of Mott-superfluid transition in nitrogen-vacancy centers coupled to photonic crystal cavities: publisher's note. Optics Letters, 2020, 45, 665.	3.3	0
20	Revealing Electron Spill-Out in Plasmonic Nanostructures Using Particle Simulation. , 2020, , .		0
21	Particle-in-Cell Simulation of Plasmons. , 2020, , .		0
22	Surface Exciton Polaritons: A Promising Mechanism for Refractive-Index Sensing. Physical Review Applied, 2019, 12, .	3.8	33
23	Quantum Plasmonic Immunoassay Sensing. Nano Letters, 2019, 19, 5853-5861.	9.1	55
24	Surface Plasmon Enhanced Light Scattering Biosensing: Size Dependence on the Gold Nanoparticle Tag. Sensors, 2019, 19, 323.	3.8	15
25	High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study. Nanomaterials, 2019, 9, 165.	4.1	126
26	Quantum plasmonics get applied. Progress in Quantum Electronics, 2019, 65, 1-20.	7.0	70
27	Compounding Plasmon–Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting. Nanomaterials, 2019, 9, 564.	4.1	12
28	Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Advanced Optical Materials, 2019, 7, 1801433.	7.3	303
29	<inline-formula> <tex-math notation="LaTeX">\$ext{MoS}_2\$</tex-math> </inline-formula> -Based Highly Sensitive Near-Infrared Surface Plasmon Resonance Refractive Index Sensor. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-7.	2.9	40
30	Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. Journal Physics D: Applied Physics, 2019, 52, 065101.	2.8	62
31	Helmholtz decomposition analysis of electron energy loss: differentiating resonances on polarization and radiation eigenmodes. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1472.	2.1	2
32	Optical signatures of Mott-superfluid transition in nitrogen-vacancy centers coupled to photonic crystal cavities. Optics Letters, 2019, 44, 2081.	3.3	3
33	Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics, 2018, 10, 703.	25.5	105
34	Quantum plasmonics: new opportunity in fundamental and applied photonics: publisher's note. Advances in Optics and Photonics, 2018, 10, 939.	25.5	1
35	Ultrasensitive Detection of Cancer Prognostic miRNA Biomarkers Based on Surface Plasmon Enhanced Light Scattering. ACS Sensors, 2017, 2, 635-640.	7.8	41
36	Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection. International Journal of Nanomedicine, 2017, Volume 12, 2307-2314.	6.7	30

#	Article	IF	Citations
37	Plasmonic Responses in Metal Nanoslit Array Fabricated by Interference Lithography. Journal of Molecular and Engineering Materials, 2016, 04, 1640007.	1.8	1
38	Investigation of plasmonic signal enhancement based on long range surface plasmon resonance with gold nanoparticle tags. Journal of Materials Chemistry C, 2016, 4, 9897-9904.	5. 5	26
39	Highly efficient tunable and localized on-chip electrical plasmon source using protruded metal-insulator-metal structure. Optics Express, 2016, 24, 10663.	3.4	5
40	Charge transfer plasmon resonances across silver–molecule–silver junctions: estimating the terahertz conductance of molecules at near-infrared frequencies. RSC Advances, 2016, 6, 70884-70894.	3.6	17
41	Exploiting Surface-Plasmon-Enhanced Light Scattering for the Design of Ultrasensitive Biosensing Modality. Analytical Chemistry, 2016, 88, 11924-11930.	6.5	26
42	Interference induced periodic oscillation of convolutional-surface-plasmon resonance for a metal nanoparticle encapsulated by a dielectric microsphere. Journal of Optics (United Kingdom), 2016, 18, 075010.	2.2	1
43	On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nature Photonics, 2016, 10, 274-280.	31.4	110
44	Nanoparticle loading effects on the broadband absorption for plasmonic-metal@semiconductor-microsphere photocatalyst. Catalysis Today, 2016, 278, 312-318.	4.4	4
45	Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale, 2016, 8, 8008-8016.	5 . 6	31
46	Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6, 7684.	12.8	215
47	Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots. Lab on A Chip, 2015, 15, 253-263.	6.0	43
48	Plasmonic Metals for Nanohole-Array Surface Plasmon Field-Enhanced Fluorescence Spectroscopy Biosensing. Plasmonics, 2014, 9, 825-833.	3.4	14
49	Development of Localized Surface Plasmon Resonance-Based Point-of-Care System. Plasmonics, 2014, 9, 835-844.	3.4	15
50	Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions. Science, 2014, 343, 1496-1499.	12.6	388
51	Interference-Induced Broadband Absorption Enhancement for Plasmonic-Metal@Semiconductor Microsphere as Visible Light Photocatalyst. ACS Catalysis, 2014, 4, 4269-4276.	11.2	27
52	Glass transition, viscosity, and conductivity correlations in solutions of lithium salts in PEGylated imidazolium ionic liquids. Journal of Molecular Liquids, 2014, 198, 398-408.	4.9	11
53	Interfacial Characteristics of a PEGylated Imidazolium Bistriflamide Ionic Liquid Electrolyte at a Lithium Ion Battery Cathode of LiMn ₂ O ₄ . ACS Applied Materials & amp; Interfaces, 2013, 5, 2075-2084.	8.0	14
54	High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers. Lab on A Chip, 2013, 13, 2405.	6.0	37

#	Article	IF	CITATION
55	Synthesis of Anisotropic Concave Gold Nanocuboids with Distinctive Plasmonic Properties. Chemistry of Materials, 2013, 25, 2470-2475.	6.7	61
56	Incident-angle dependence of fluorescence enhancement and biomarker immunoassay on gold nanohole array. Sensors and Actuators B: Chemical, 2013, 186, 205-211.	7.8	19
57	Fowler–Nordheim Tunneling Induced Charge Transfer Plasmons between Nearly Touching Nanoparticles. ACS Nano, 2013, 7, 707-716.	14.6	114
58	Designing surface plasmon resonance of subwavelength hole arrays by studying absorption. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 521.	2.1	28
59	Optical Properties of Chiral Three-Dimensional Plasmonic Oligomers at the Onset of Charge-Transfer Plasmons. ACS Nano, 2012, 6, 10355-10365.	14.6	103
60	Carboxybetaine, sulfobetaine, and cationic block copolymer coatings: A comparison of the surface properties and antibiofouling behavior. Journal of Applied Polymer Science, 2012, 124, 2154-2170.	2.6	65
61	lonic liquids with fluorinated block-oligomer tails: Influence of self-assembly on transport properties. Journal of Materials Chemistry, 2011, 21, 19275.	6.7	30
62	Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express, 2010, 18, 14395.	3.4	799