Georgi Shilyashki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3921417/publications.pdf

Version: 2024-02-01

1040056 996975 26 236 9 15 citations g-index h-index papers 26 26 26 150 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Calculated versus measured iron losses and instantaneous magnetization power functions of electrical steel. Electrical Engineering, 2022, 104, 2449-2455.	2.0	4
2	Timeâ€everaged and instantaneous magnetic loss characteristics of different products of electrical steel for frequencies of 16Â2/3ÂHz up to 500ÂHz. IET Electric Power Applications, 2022, 16, 525-535.	1.8	5
3	Giant Epstein Tester for Magnetic Energy Loss Measurements of Non-Annealed Domain-Refined Fe–Si. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	2
4	Numerical modeling of magnetic induction in standard and triple Epstein frames considering cutting and staggering of sensor strips. AIP Advances, 2021, 11, .	1.3	2
5	3-D MACC Modeling of Instantaneous Magnetic Flux Distributions in Epstein Tester. IEEE Transactions on Magnetics, 2020, 56, 1-5.	2.1	8
6	3-D Printed Magnetic Field Coil for Medium Frequency Epstein Tester. IEEE Transactions on Magnetics, 2020, 56, 1-5.	2.1	5
7	Physical Assessment of the Magnetic Path Length of Energy Loss Testers. IEEE Transactions on Magnetics, 2020, 56, 1-7.	2.1	11
8	Numerical and Experimental Determination of Local Building Factors of a Three-Phase Transformer Core Package. IEEE Transactions on Magnetics, 2019, 55, 1-8.	2.1	0
9	Theoretical Basis for Physically Correct Measurement and Interpretation of Magnetic Energy Losses. IEEE Transactions on Magnetics, 2018, 54, 1-7.	2.1	6
10	Effects of DC Bias on Regional Flux and Magnetostriction of a Single-Phase Transformer Core Modeled by 3-D MACC. IEEE Transactions on Magnetics, 2018, 54, 1-6.	2.1	17
11	Can Circular Rotational Losses of Non-Oriented Soft Magnetic Materials Be Estimated From Alternating Losses?. IEEE Transactions on Magnetics, 2018, 54, 1-6.	2.1	6
12	Interlaminar Magnetic Flux Assessment of a Transformer Core Measured by an Extra-Thin Printed Foil Detector. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	5
13	Magnetic circuit modelling of transformer core induction $\hat{a} \in \text{``resolution and accuracy. IET Electric}$ Power Applications, 2017, 11, 1341-1346.	1.8	4
14	3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores. Sensors, 2017, 17, 2953.	3.8	7
15	Spatial distributions of magnetostriction, displacements and noise generation of model transformer cores. International Journal of Mechanical Sciences, 2016, 118, 188-194.	6.7	24
16	Inhomogeneity and Local Distortions of Magnetic Flux in a Single-Phase Transformer Core Package. IEEE Transactions on Magnetics, 2016, 52, 1-9.	2.1	1
17	Multi-directionally non-linear magnetic equivalence circuit calculation (MACC) of rotational magnetization intensity in transformer cores. International Journal of Applied Electromagnetics and Mechanics, 2016, 50, 81-95.	0.6	11
18	Numerical Prediction of Rhombic Rotational Magnetization Patterns in a Transformer Core Package. IEEE Transactions on Magnetics, 2016, 52, 1-10.	2.1	14

#	Article	IF	CITATIONS
19	Automatic 3-dimensional flux analyses of a 3-phase model transformer core. International Journal of Applied Electromagnetics and Mechanics, 2015, 48, 277-282.	0.6	4
20	Pin Sensor for Interior Induction Measurements in Transformer Cores. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	9
21	The Impact of Off-Plane Flux on Losses and Magnetostriction of Transformer Core Steel. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	16
22	Concept for more correct magnetic power loss measurements considering path length dynamics. International Journal of Applied Electromagnetics and Mechanics, 2014, 44, 259-270.	0.6	8
23	Rise-of-temperature method for building factor distribution in 1-phase model transformer core interior considering high DC bias. International Journal of Applied Electromagnetics and Mechanics, 2014, 44, 349-354.	0.6	5
24	Automatic 3-D Building Factor Analyses of a Grain-Oriented Model Transformer Core. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	18
25	Rotational Magnetization in Transformer Cores—A Review. IEEE Transactions on Magnetics, 2011, 47, 4523-4533.	2.1	43
26	Consistent Measurement of Magnetic Energy Losses by a Low-Mass, High-Frequency Single Sheet Tester. , 0, , .		1