Zi-chao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3921212/publications.pdf Version: 2024-02-01

7LCHAOLI

#	Article	IF	CITATIONS
1	Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557, 43-49.	27.8	1,091
2	Natural Variation in OsPRR37 Regulates Heading Date and Contributes to Rice Cultivation at a Wide Range of Latitudes. Molecular Plant, 2013, 6, 1877-1888.	8.3	298
3	Overexpression of OsMYB48-1, a Novel MYB-Related Transcription Factor, Enhances Drought and Salinity Tolerance in Rice. PLoS ONE, 2014, 9, e92913.	2.5	287
4	A core collection and mini core collection of Oryza sativa L. in China. Theoretical and Applied Genetics, 2011, 122, 49-61.	3.6	197
5	Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature Communications, 2017, 8, 14788.	12.8	192
6	<i>Os<scp>ASR</scp>5</i> enhances drought tolerance through a stomatal closure pathway associated with <scp>ABA</scp> and H ₂ O ₂ signalling in rice. Plant Biotechnology Journal, 2017, 15, 183-196.	8.3	174
7	Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature Communications, 2019, 10, 2562.	12.8	155
8	QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theoretical and Applied Genetics, 2005, 110, 1244-1252.	3.6	148
9	OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Science, 2012, 196, 143-151.	3.6	136
10	Natural Variation in <i>OsLG3</i> Increases Drought Tolerance in Rice by Inducing ROS Scavenging. Plant Physiology, 2018, 178, 451-467.	4.8	121
11	Mapping QTLs of root morphological traits at different growth stages in rice. Genetica, 2008, 133, 187-200.	1.1	117
12	The C–S–A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. Journal of Experimental Botany, 2018, 69, 1485-1498.	4.8	114
13	Genetic Analysis of Cold Tolerance at the Germination and Booting Stages in Rice by Association Mapping. PLoS ONE, 2015, 10, e0120590.	2.5	109
14	Alternative splicing of <i>Os<scp>LG</scp>3b</i> controls grain length and yield in <i>japonica</i> rice. Plant Biotechnology Journal, 2018, 16, 1667-1678.	8.3	109
15	Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. Journal of Genetics and Genomics, 2009, 36, 173-183.	3.9	102
16	OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biology, 2017, 15, 28.	3.8	100
17	Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Science, 2008, 174, 340-347.	3.6	99
18	A super pan-genomic landscape of rice. Cell Research, 2022, 32, 878-896.	12.0	99

#	Article	IF	CITATIONS
19	Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theoretical and Applied Genetics, 2010, 121, 895-905.	3.6	79
20	OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. Plant Science, 2018, 270, 131-139.	3.6	78
21	Genetic structure and differentiation of Oryza sativa L. in China revealed by microsatellites. Theoretical and Applied Genetics, 2009, 119, 1105-1117.	3.6	76
22	Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theoretical and Applied Genetics, 2007, 115, 1109-1126.	3.6	66
23	Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Scientific Reports, 2020, 10, 9958.	3.3	64
24	Characterization of Transcription Factor Gene OsDRAP1 Conferring Drought Tolerance in Rice. Frontiers in Plant Science, 2018, 9, 94.	3.6	63
25	Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3–OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. Journal of Experimental Botany, 2018, 69, 4723-4737.	4.8	62
26	Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions. PLoS Genetics, 2018, 14, e1007521.	3.5	61
27	Genetic Architecture and Candidate Genes for Deep-Sowing Tolerance in Rice Revealed by Non-syn GWAS. Frontiers in Plant Science, 2018, 9, 332.	3.6	49
28	Natural variation in <scp><i>E</i></scp> <i>arly flowering1</i> contributes to early flowering in <i>japonica</i> rice under long days. Plant, Cell and Environment, 2014, 37, 101-112.	5.7	46
29	An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genomics, 2014, 15, 956.	2.8	44
30	Evaluation of Genetic Diversity of Rice Landraces (Oryza sativa L.) in Yunnan, China. Breeding Science, 2007, 57, 91-99.	1.9	43
31	Genetic structure and phylogeography of rice landraces in Yunnan, China, revealed by SSR. Genome, 2007, 50, 72-83.	2.0	40
32	Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. Science Bulletin, 2006, 51, 681-688.	1.7	39
33	Domestication and geographic origin of <i><scp>O</scp>ryza sativa</i> in <scp>C</scp> hina: insights from multilocus analysis of nucleotide variation of <i><scp>O</scp></i> .Â <i>sativa</i> and <i><scp>O</scp></i> .Â <i>rufipogon</i> . Molecular Ecology, 2012, 21, 5073-5087.	3.9	39
34	QTL mapping and QTLâ€Ã—â€environment interaction analysis of multi-seed pod in cultivated peanut (Arachis)) Tj <u>E</u> TQq0	0 g _f gBT /Ov

35	New alleles for chlorophyll content and stay-green traits revealed by a genome wide association study in rice (Oryza sativa). Scientific Reports, 2019, 9, 2541.	3.3	34
36	QTLs of cold tolerance-related traits at the booting stage for NIL-RILs in rice revealed by SSR. Genes and Genomics, 2009, 31, 143-154.	1.4	33

#	Article	IF	CITATIONS
37	Rice functional genomics and breeding database (RFGB)-3K-rice SNP and InDel sub-database. Chinese Science Bulletin, 2015, 60, 367-371.	0.7	31
38	Stepwise selection of natural variations at <i>CTB2</i> and <i>CTB4a</i> improves cold adaptation during domestication of <i>japonica</i> rice. New Phytologist, 2021, 231, 1056-1072.	7.3	30
39	Title is missing!. Genetic Resources and Crop Evolution, 2002, 49, 67-74.	1.6	29
40	Genetic control of panicle architecture in rice. Crop Journal, 2021, 9, 590-597.	5.2	29
41	Genomics-based plant germplasm research (GPGR). Crop Journal, 2017, 5, 166-174.	5.2	28
42	Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice. Theoretical and Applied Genetics, 2018, 131, 157-166.	3.6	28
43	Genetic Basis Underlying Correlations Among Growth Duration and Yield Traits Revealed by GWAS in Rice (Oryza sativa L.). Frontiers in Plant Science, 2018, 9, 650.	3.6	28
44	Natural alleles of <i>GLA</i> for grain length and awn development were differently domesticated in rice subspecies <i>japonica</i> and <i>indica</i> . Plant Biotechnology Journal, 2019, 17, 1547-1559.	8.3	27
45	Genetic analysis of roots and shoots in rice seedling by association mapping. Genes and Genomics, 2019, 41, 95-105.	1.4	27
46	Differentiation, evolution and utilization of natural alleles for cold adaptability at the reproductive stage in rice. Plant Biotechnology Journal, 2020, 18, 2491-2503.	8.3	27
47	Fine mapping of the awn gene on chromosome 4 in rice by association and linkage analyses. Science Bulletin, 2011, 56, 835-839.	1.7	26
48	Analysis of Gene Expression Profile Induced by Water Stress in Upland Rice (<i>Oryza sativa</i> L. var.) Tj ETQq0 (Biology, 2007, 49, 1455-1463.) 0 rgBT /0 8.5	Overlock 10 23
49	Genetic structure and diversity of Oryza sativa L. in Guizhou, China. Science Bulletin, 2007, 52, 343-351.	1.7	23
50	Quantitative Trait Loci for Mercury Tolerance in Rice Seedlings. Rice Science, 2013, 20, 238-242.	3.9	23
51	Simple Sequence Repeat Analysis of Genetic Diversity in Primary Core Collection of Peach (<i>Prunus) Tj ETQq1 1</i>	0 <mark>,78</mark> 4314 8.5	ŀrgBT /Over
52	GNP6, a novel allele of MOC1, regulates panicle and tiller development in rice. Crop Journal, 2021, 9, 57-67.	5.2	22
53	Development of upland rice introgression lines and identification of QTLsÂfor basal root thickness under different water regimes. Journal of Genetics and Genomics, 2011, 38, 547-556.	3.9	21
54	Characterization and identification of cold tolerant near-isogenic lines in rice. Breeding Science, 2012, 62, 196-201.	1.9	21

#	Article	IF	CITATIONS
55	Rice SPL10 positively regulates trichome development through expression of <i>HL6</i> and auxinâ€related genes. Journal of Integrative Plant Biology, 2021, 63, 1521-1537.	8.5	21
56	QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Science Bulletin, 2003, 48, 2718-2724.	1.7	20
57	OsADR3 increases drought stress tolerance by inducing antioxidant defense mechanisms and regulating OsGPX1 in rice (Oryza sativa L.). Crop Journal, 2021, 9, 1003-1017.	5.2	19
58	<i>RGN1</i> controls grain number and shapes panicle architecture in rice. Plant Biotechnology Journal, 2022, 20, 158-167.	8.3	19
59	QTL Mapping and Q×E Interactions of Grain Cooking and Nutrient Qualities in Rice Under Upland and Lowland Environments. Journal of Genetics and Genomics, 2007, 34, 420-428.	3.9	18
60	Localization of QTL for basal root thickness in japonica rice and effect of marker-assisted selection for a major QTL. Euphytica, 2008, 164, 729-737.	1.2	17
61	Fine Mapping and Cloning of the Grain Number Per-Panicle Gene (Gnp4) on Chromosome 4 in Rice (Oryza sativa L.). Agricultural Sciences in China, 2011, 10, 1825-1833.	0.6	17
62	Fine Mapping of qTGW3-1, a QTL for 1000-Grain Weight on Chromosome 3 in Rice. Journal of Integrative Agriculture, 2012, 11, 879-887.	3.5	15
63	Coldâ€adaptive evolution at the reproductive stage in <i>Geng</i> / <i>japonica</i> subspecies reveals the role of <scp><i>OsMAPK3</i></scp> and <scp><i>OsLEA9</i></scp> . Plant Journal, 2022, 111, 1032-1051.	5.7	13
64	QTL Mapping and Correlations Between Leaf Water Potential and Drought Resistance in Rice Under Upland and Lowland Environments. Acta Agronomica Sinica, 2008, 34, 198-206.	0.3	12
65	Yield Trait Variation and QTL Mapping in a DH Population of Rice Under Phosphorus Deficiency. Acta Agronomica Sinica, 2008, 34, 1137-1142.	0.3	12
66	Genetic structure and eco-geographical differentiation of cultivated Hsien rice (Oryza sativa L. subsp.) Tj ETQq0	0 0 rgBT / 1.9	Overlock 10 1
67	Genetic architecture of flag leaf length and width in rice (Oryza sativa L.) revealed by association mapping. Genes and Genomics, 2017, 39, 341-352.	1.4	12
68	Genetic architecture to cause dynamic change in tiller and panicle numbers revealed by genomeâ€wide association study and transcriptome profile in rice. Plant Journal, 2020, 104, 1603-1616.	5.7	12
69	Comparative transcriptional profiling under drought stress between upland and lowland rice (Oryza) Tj ETQq1 1	0.784314 9.0	4 rgBT /Overlo
70	Nucleotide diversity, natural variation, and evolution of Flexible culm-1 and Strong culm-2 lodging resistance genes in rice. Genome, 2016, 59, 473-483.	2.0	11
71	Identification of main effect and epistatic QTLs controlling initial flowering date in cultivated peanut (Arachis hypogaea L.). Journal of Integrative Agriculture, 2020, 19, 2383-2393.	3.5	11
72	Assessing indica-japonica differentiation of improved rice varieties using microsatellite markers. Journal of Genetics and Genomics, 2009, 36, 305-312.	3.9	10

#	Article	IF	CITATIONS
73	Genome-Wide Identification of MDH Family Genes and Their Association with Salt Tolerance in Rice. Plants, 2022, 11, 1498.	3.5	10
74	Identification and Validation of Aerobic Adaptation QTLs in Upland Rice. Life, 2020, 10, 65.	2.4	7
75	Geographical genetic diversity and divergence of common wild rice (O. rufipogon Griff.) in China. Science Bulletin, 2008, 53, 3559-3566.	9.0	6

6 Genetic Structure and Eco-Geographical Differentiation of Cultivated Keng Rice (Oryza sativa L. subsp.) Tj ETQq0 0.0 rgBT /Overlock 10

77	High-density genetic map development and QTL mapping for concentration degree of floret flowering date in cultivated peanut (Arachis hypogaea L.). Molecular Breeding, 2020, 40, 1.	2.1	6
78	OsNBL1, a Multi-Organelle Localized Protein, Plays Essential Roles in Rice Senescence, Disease Resistance, and Salt Tolerance. Rice, 2021, 14, 10.	4.0	4
79	Genetic basis and network underlying synergistic roots and shoots biomass accumulation revealed by genome-wide association studies in rice. Scientific Reports, 2021, 11, 13769.	3.3	4
80	Mapping QTLs for Grain Weight and Shape Using Four Sister Near Isogenic Lines of Rice. Acta Agronomica Sinica, 2010, 36, 1310-1317.	0.3	3
81	Correlation analysis and QTL mapping of osmotic potential in japonica rice under upland and lowland conditions. Canadian Journal of Plant Science, 2013, 93, 785-792.	0.9	3
82	Identifying natural genotypes of grain number per panicle in rice (Oryza sativa L.) by association mapping. Genes and Genomics, 2019, 41, 283-295.	1.4	3
83	Fine Mapping of Two Additive Effect Genes for Awn Development in Rice (Oryza sativa L.). PLoS ONE, 2016, 11, e0160792.	2.5	3
84	Dissection of genetic architecture for tiller angle in rice (<i>Oryza sativa</i> . L) by multiple genome-wide association analyses. PeerJ, 0, 10, e12674.	2.0	3
85	Effects of TaMTL-Edited Mutations on Grain Phenotype and Storage Component Composition in Wheat. Agriculture (Switzerland), 2022, 12, 587.	3.1	3
86	Correlation between allele sizes of microsatellites and phenotypic variations in rice landraces. Frontiers of Agriculture in China, 2009, 3, 130-139.	0.2	2
87	Comparison and rapid prediction of lignocellulose and organic elements of a wide variety of rice straw based on near infrared spectroscopy. International Journal of Agricultural and Biological Engineering, 2019, 12, 166-172.	0.6	2

88 Mapping of three QTLs for seed setting and analysis on the candidate gene for qSS-1 in rice (Oryza) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

89	Transcriptome and metabolome profiling of unheading in F1 hybrid rice. Journal of Integrative Agriculture, 2020, 19, 2367-2382.	3.5	1	
----	---	-----	---	--