Yasuhiko Kizuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3919244/publications.pdf Version: 2024-02-01

VASUHIKO KIZUKA

#	Article	IF	CITATIONS
1	Glycans and Cancer. Advances in Cancer Research, 2015, 126, 11-51.	5.0	327
2	An aberrant sugar modification of <scp>BACE</scp> 1 blocks its lysosomal targeting in <scp>A</scp> lzheimer's disease. EMBO Molecular Medicine, 2015, 7, 175-189.	6.9	147
3	Enzymes for N-Clycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules, 2016, 6, 25.	4.0	125
4	N -glycan and Alzheimer's disease. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2447-2454.	2.4	94
5	Loss of Branched O-Mannosyl Glycans in Astrocytes Accelerates Remyelination. Journal of Neuroscience, 2013, 33, 10037-10047.	3.6	65
6	Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochemical Journal, 2016, 473, 21-30.	3.7	65
7	Disease-associated glycans on cell surface proteins. Molecular Aspects of Medicine, 2016, 51, 56-70.	6.4	64
8	Bisecting GlcNAc Is a General Suppressor of Terminal Modification of N-glycan*[S]. Molecular and Cellular Proteomics, 2019, 18, 2044-2057.	3.8	63
9	Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nature Communications, 2018, 9, 3380.	12.8	60
10	Expression and Function of the HNK-1 Carbohydrate. Journal of Biochemistry, 2007, 143, 719-724.	1.7	52
11	Visualizing Trimming Dependence of Biodistribution and Kinetics with Homo- and Heterogeneous N-Glycoclusters on Fluorescent Albumin. Scientific Reports, 2016, 6, 21797.	3.3	52
12	Learning/Memory Impairment and Reduced Expression of the HNK-1 Carbohydrate in β4-Galactosyltransferase-II-deficient Mice. Journal of Biological Chemistry, 2009, 284, 12550-12561.	3.4	50
13	The Absence of Core Fucose Up-regulates GnT-III and Wnt Target Genes. Journal of Biological Chemistry, 2014, 289, 11704-11714.	3.4	50
14	HNK-1 Glyco-epitope Regulates the Stability of the Glutamate Receptor Subunit GluR2 on the Neuronal Cell Surface. Journal of Biological Chemistry, 2009, 284, 30209-30217.	3.4	47
15	An Alkynyl-Fucose Halts Hepatoma Cell Migration and Invasion by Inhibiting GDP-Fucose-Synthesizing Enzyme FX, TSTA3. Cell Chemical Biology, 2017, 24, 1467-1478.e5.	5.2	47
16	Physical and Functional Association of Glucuronyltransferases and Sulfotransferase Involved in HNK-1 Biosynthesis. Journal of Biological Chemistry, 2006, 281, 13644-13651.	3.4	46
17	Global mapping of glycosylation pathways in human-derived cells. Developmental Cell, 2021, 56, 1195-1209.e7.	7.0	46
18	Brain-specific Expression of N-Acetylglucosaminyltransferase IX (GnT-IX) Is Regulated by Epigenetic Histone Modifications. Journal of Biological Chemistry, 2011, 286, 31875-31884.	3.4	45

ΥΑSUΗΙΚΟ ΚΙΖUKA

#	Article	IF	CITATIONS
19	Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Cellular and Molecular Life Sciences, 2012, 69, 4135-4147.	5.4	45
20	Epigenetic Regulation of a Brain-specific Glycosyltransferase N-Acetylglucosaminyltransferase-IX (GnT-IX) by Specific Chromatin Modifiers. Journal of Biological Chemistry, 2014, 289, 11253-11261.	3.4	44
21	Oligosaccharyltransferase: A Gatekeeper of Health and Tumor Progression. International Journal of Molecular Sciences, 2019, 20, 6074.	4.1	42
22	3D Structure and Function of Glycosyltransferases Involved in N-glycan Maturation. International Journal of Molecular Sciences, 2020, 21, 437.	4.1	41
23	High-Sensitivity and Low-Toxicity Fucose Probe for Glycan Imaging and Biomarker Discovery. Cell Chemical Biology, 2016, 23, 782-792.	5.2	39
24	A Non-sulfated Form of the HNK-1 Carbohydrate Is Expressed in Mouse Kidney. Journal of Biological Chemistry, 2005, 280, 23876-23883.	3.4	38
25	Atomic visualization of a flipped-back conformation of bisected glycans bound to specific lectins. Scientific Reports, 2016, 6, 22973.	3.3	38
26	Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology, 2014, 24, 314-324.	2.5	37
27	Neural functions of bisecting GlcNAc. Glycoconjugate Journal, 2018, 35, 345-351.	2.7	33
28	Core fucose is critical for CD14-dependent Toll-like receptor 4 signaling. Glycobiology, 2017, 27, 1006-1015.	2.5	32
29	Glyco-redox, a link between oxidative stress and changes of glycans: Lessons from research on glutathione, reactive oxygen and nitrogen species to glycobiology. Archives of Biochemistry and Biophysics, 2016, 595, 72-80.	3.0	31
30	Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis. Oncogene, 2018, 37, 4287-4299.	5.9	29
31	True significance of N-acetylglucosaminyltransferases GnT-III, V and α1,6 fucosyltransferase in epithelial-mesenchymal transition and cancer. Molecular Aspects of Medicine, 2021, 79, 100905.	6.4	27
32	High affinity sugar ligands of C-type lectin receptor langerin. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1592-1601.	2.4	26
33	Fucosylated surfactant protein-D is a biomarker candidate for the development of chronic obstructive pulmonary disease. Journal of Proteomics, 2015, 127, 386-394.	2.4	25
34	N-Glycosylation. Advances in Experimental Medicine and Biology, 2021, 1325, 3-24.	1.6	24
35	The Inhibitory Role of α2,6-Sialylation in Adipogenesis. Journal of Biological Chemistry, 2017, 292, 2278-2286.	3.4	23
36	Specific Enzyme Complex of β-1,4-Galactosyltransferase-II and Glucuronyltransferase-P Facilitates Biosynthesis of N-linked Human Natural Killer-1 (HNK-1) Carbohydrate*. Journal of Biological Chemistry, 2011, 286, 31337-31346.	3.4	22

ΥΑSUΗΙΚΟ ΚΙΖUKA

#	Article	IF	CITATIONS
37	The SH3 domain in the fucosyltransferase FUT8 controls FUT8 activity and localization and is essential for core fucosylation. Journal of Biological Chemistry, 2020, 295, 7992-8004.	3.4	21
38	Glycation vs. glycosylation: a tale of two different chemistries and biology in Alzheimer's disease. Glycoconjugate Journal, 2016, 33, 487-497.	2.7	20
39	A keratan sulfate disaccharide prevents inflammation and the progression of emphysema in murine models. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L268-L276.	2.9	20
40	Generation of the heterogeneity of extracellular vesicles by membrane organization and sorting machineries. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 681-691.	2.4	20
41	Roles of protein arginine methyltransferase 1 (PRMT1) in brain development and disease. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129776.	2.4	20
42	A Sulfated Glycosaminoglycan Linkage Region Is a Novel Type of Human Natural Killer-1 (HNK-1) Epitope Expressed on Aggrecan in Perineuronal Nets. PLoS ONE, 2015, 10, e0144560.	2.5	20
43	Distinct Transport and Intracellular Activities of Two GlcAT-P Isoforms. Journal of Biological Chemistry, 2009, 284, 9247-9256.	3.4	19
44	Epigenetic regulation of neural <i>N</i> â€glycomics. Proteomics, 2016, 16, 2854-2863.	2.2	19
45	<i>N</i> â€Glycosylation is essential for the secretion of extracellular superoxide dismutase. FEBS Letters, 2016, 590, 3357-3367.	2.8	19
46	Nâ€glycome inheritance from cells to extracellular vesicles in B16 melanomas. FEBS Letters, 2019, 593, 942-951.	2.8	13
47	Rab11-mediated post-Golgi transport of the sialyltransferase ST3GAL4 suggests a new mechanism for regulating glycosylation. Journal of Biological Chemistry, 2021, 296, 100354.	3.4	13
48	Laminin-1 is a novel carrier glycoprotein for the nonsulfated HNK-1 epitope in mouse kidney. Glycobiology, 2008, 18, 331-338.	2.5	12
49	Clec4g (LSECtin) interacts with BACE1 and suppresses $A\hat{I}^2$ generation. FEBS Letters, 2015, 589, 1418-1422.	2.8	12
50	Reactivity of anti-HNK-1 antibodies to branched O- mannose glycans associated with demyelination. Biochemical and Biophysical Research Communications, 2017, 487, 450-456.	2.1	12
51	Identification and characterization of UDP-mannose in human cell lines and mouse organs: Differential distribution across brain regions and organs. Biochemical and Biophysical Research Communications, 2018, 495, 401-407.	2.1	12
52	Distributions of glucuronyltransferases, GlcAT-P and GlcAT-S, and their target substrate, the HNK-1 carbohydrate epitope in the adult mouse brain with or without a targeted deletion of the GlcAT-P gene. Brain Research, 2007, 1179, 1-15.	2.2	11
53	- Ceramide galactosyltransferase expression is regulated positively by Nkx2.2 and negatively by OLIG2. Glycobiology, 2014, 24, 926-934.	2.5	10
54	Recognition of glycan and protein substrates by N-acetylglucosaminyltransferase-V. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129726.	2.4	10

Yasuhiko Kizuka

#	Article	IF	CITATIONS
55	Differential Labeling of Glycoproteins with Alkynyl Fucose Analogs. International Journal of Molecular Sciences, 2020, 21, 6007.	4.1	10
56	In Situ Ligation of High―and Lowâ€Affinity Ligands to Cell Surface Receptors Enables Highly Selective Recognition. Advanced Science, 2017, 4, 1700147.	11.2	9
57	N-acetylglucosaminyltransferase-V requires a specific noncatalytic luminal domain for its activity toward glycoprotein substrates. Journal of Biological Chemistry, 2022, 298, 101666.	3.4	8
58	Extracellular Vesicles and Glycosylation. Advances in Experimental Medicine and Biology, 2021, 1325, 137-149.	1.6	6
59	Structure-based design of UDP-ClcNAc analogs as candidate GnT-V inhibitors. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130118.	2.4	6
60	α-Klotho mice demonstrate increased expression of the non-sulfated N-glycan form of the HNK-1 glyco-epitope in kidney tissue. Journal of Biochemistry, 2014, 156, 107-113.	1.7	5
61	Use of Clycan-Targeted Antibodies/Lectins to Study the Expression/Function of Glycosyltransferases in the Nervous System. Advances in Neurobiology, 2014, 9, 117-127.	1.8	5
62	Implication of C-type lectin receptor langerin and keratan sulfate disaccharide in emphysema. Cellular Immunology, 2018, 333, 80-84.	3.0	5
63	Region-specific upregulation of HNK-1 glycan in the PRMT1-deficient brain. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129509.	2.4	5
64	Peptide Sequence Mapping around Bisecting GlcNAc-Bearing N-Glycans in Mouse Brain. International Journal of Molecular Sciences, 2021, 22, 8579.	4.1	4
65	Sialylation of extracellular superoxide dismutase (EC-SOD) enhances furin-mediated cleavage and secretion. Clycobiology, 2017, 27, 1081-1088.	2.5	3
66	Tissue-Specific Regulation of HNK-1 Biosynthesis by Bisecting GlcNAc. Molecules, 2021, 26, 5176.	3.8	3
67	Cryostorage of unstable <i>N</i> -acetylglucosaminyltransferase-V by synthetic zwitterions. RSC Advances, 2022, 12, 11628-11631.	3.6	3
68	Proteomic and glycomic analyses of a lung-specific protein surfactant protein-D. Data in Brief, 2015, 5, 707-711.	1.0	1
69	Epigenetic Regulation of and by Glycosylation. , 2015, , 1129-1134.		1
70	Detection and Modulation of Fucosylated Glycans using Fucose Analogs. Trends in Glycoscience and Glycotechnology, 2019, 31, E1-E6.	0.1	1
71	N-Glycan Branching and Its Biological Significance. , 2014, , 1-7.		0
72	O2-12-06: GLYCOSYLATION REGULATES DEGRADATION OF BACE1 IN LYSOSOME. , 2014, 10, P193-P193.		0

Yasuhiko Kizuka

#	Article	IF	CITATIONS
73	P1-068: How and where is app modified with o-glycans?. , 2015, 11, P364-P364.		0
74	Inside Front Cover: Epigenetic regulation of neural N -glycomics. Proteomics, 2016, 16, NA-NA.	2.2	0
75	Cell Imaging: In Situ Ligation of High- and Low-Affinity Ligands to Cell Surface Receptors Enables Highly Selective Recognition (Adv. Sci. 11/2017). Advanced Science, 2017, 4, .	11.2	0
76	P1â€⊋07: ENDOTHELIAL APP EXPRESSION LEADS TO CEREBRAL AMYLOID ANGIOPATHY IN VIVO. Alzheimer's and Dementia, 2018, 14, P358.	0.8	0
77	Glycans in Chronic Obstructive Pulmonary Disease (COPD). , 2021, , 250-257.		0
78	The Involvement of Cellular Glycans in Alzheimer's Disease. , 2021, , 287-293.		0
79	Regulation of HNK-1 (Human Natural Killer-1) Carbohydrate Expression: Multiple Control Mechanisms of Biosynthetic Enzyme Activity. Trends in Glycoscience and Glycotechnology, 2010, 22, 194-199.	0.1	0
80	Epigenetic Regulation of Glycogenes by microRNAs. Trends in Glycoscience and Glycotechnology, 2014, 26, 167-169.	0.1	0
81	Beta-1,3-Glucuronyltransferase 1 (Glucuronosyltransferase P); Beta-1,3-Glucuronyltransferase 2 (B3GAT1,2). , 2014, , 835-847.		0
82	N-Glycan Branching N-glycan branching and Its Biological Significance. , 2015, , 963-969.		0
83	Regulation of Glycosylation through Glycosyltransferase Shedding by SPPL3. Trends in Glycoscience and Glycotechnology, 2015, 27, E61-E62.	0.1	0
84	Regulation of Lipid Biosynthesis by the <i>N</i> -glycan Biosynthetic Pathway. Trends in Glycoscience and Glycotechnology, 2016, 28, E97-E98.	0.1	0
85	4th Austria–Japan Joint Seminar for Comparative and Developmental Glycobiology. Trends in Glycoscience and Glycotechnology, 2016, 28, E47-E47.	0.1	0
86	A Novel <i>O</i> -Fucose Modification in the Nucleus. Trends in Glycoscience and Glycotechnology, 2017, 29, E69-E70.	0.1	0
87	Expression of Neural Glycans and Their Role in Disease. Trends in Glycoscience and Glycotechnology, 2017, 29, E11-E18.	0.1	0
88	Expression of Neural Glycans and Their Role in Disease. Trends in Glycoscience and Glycotechnology, 2017, 29, J13-J20.	0.1	0
89	Core Fucose Drives Melanoma Metastasis. Trends in Glycoscience and Glycotechnology, 2018, 30, E23-E24.	0.1	0
90	Core Fucose Drives Melanoma Metastasis. Trends in Glycoscience and Glycotechnology, 2018, 30, J9-J10.	0.1	0

ΥΑΣΗΙΚΟ ΚΙΖΙΚΑ

#	Article	IF	CITATIONS
91	Structural Biology of Glycans. , 2019, , 35-63.		Ο
92	Life-Style Related Disease and Aging. , 2019, , 269-288.		0
93	Next Generation Medical Care. , 2019, , 259-267.		0
94	Detection and Modulation of Fucosylated Glycans using Fucose Analogs. Trends in Glycoscience and Glycotechnology, 2019, 31, J1-J6.	0.1	0
95	Glycan Function in Development and its Regulation. , 2019, , 191-207.		0
96	Regulated Expression and Disease Relevance of Neural Glycans. Trends in Glycoscience and Glycotechnology, 2019, 31, SJ89-SJ90.	0.1	0
97	Regulated Expression and Disease Relevance of Neural Glycans. Trends in Glycoscience and Glycotechnology, 2019, 31, SE89-SE90.	0.1	0
98	Keratan sulfate disaccharide: specific targeting to langerin and possible applications to COPD. FASEB Journal, 2020, 34, 1-1.	0.5	0
99	Functional Roles of the HNK-1 Carbohydrate and Polysialic Acid in the Nervous System. , 2008, , 180-181.		0