John E Casida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3919133/publications.pdf

Version: 2024-02-01

259 papers

17,529 citations

68 h-index 18130

260 all docs 260 docs citations

260 times ranked 10471 citing authors

g-index

#	Article	IF	CITATIONS
1	Radioligand Recognition of Insecticide Targets. Journal of Agricultural and Food Chemistry, 2018, 66, 3277-3290.	5.2	9
2	Neonicotinoids and Other Insect Nicotinic Receptor Competitive Modulators: Progress and Prospects. Annual Review of Entomology, 2018, 63, 125-144.	11.8	193
3	Fiprole insecticide resistance of <scp><i>Laodelphax striatellus</i></scp> : electrophysiological and molecular docking characterization of A2′N RDL GABA receptors. Pest Management Science, 2018, 74, 2645-2651.	3.4	19
4	Acute toxicity, bioconcentration, elimination and antioxidant effects of fluralaner in zebrafish, Danio rerio. Environmental Pollution, 2018, 232, 183-190.	7.5	33
5	Pesticide Detox by Design. Journal of Agricultural and Food Chemistry, 2018, 66, 9379-9383.	5.2	21
6	Ryanodine receptor genes of the rice stem borer, Chilo suppressalis: Molecular cloning, alternative splicing and expression profiling. Pesticide Biochemistry and Physiology, 2017, 135, 69-77.	3.6	19
7	Organophosphorus Xenobiotic Toxicology. Annual Review of Pharmacology and Toxicology, 2017, 57, 309-327.	9.4	62
8	Pesticide Interactions: Mechanisms, Benefits, and Risks. Journal of Agricultural and Food Chemistry, 2017, 65, 4553-4561.	5.2	61
9	Why Prodrugs and Propesticides Succeed. Chemical Research in Toxicology, 2017, 30, 1117-1126.	3.3	30
10	The ABCs of pesticide toxicology: amounts, biology, and chemistry. Toxicology Research, 2017, 6, 755-763.	2.1	48
11	Pesticide Chemical Research in Toxicology: Lessons from Nature. Chemical Research in Toxicology, 2017, 30, 94-104.	3.3	110
12	Lipases and their inhibitors in health and disease. Chemico-Biological Interactions, 2016, 259, 211-222.	4.0	31
13	Unexpected Metabolic Reactions and Secondary Targets of Pesticide Action. Journal of Agricultural and Food Chemistry, 2016, 64, 4471-4477.	5.2	23
14	Golden Age of RyR and GABA-R Diamide and Isoxazoline Insecticides: Common Genesis, Serendipity, Surprises, Selectivity, and Safety. Chemical Research in Toxicology, 2015, 28, 560-566.	3.3	102
15	Novel GABA receptor pesticide targets. Pesticide Biochemistry and Physiology, 2015, 121, 22-30.	3.6	101
16	GABA _A receptor target of tetramethylenedisulfotetramine. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8607-8612.	7.1	51
17	Benomyl, Aldehyde Dehydrogenase, DOPAL, and the Catecholaldehyde Hypothesis for the Pathogenesis of Parkinson's Disease. Chemical Research in Toxicology, 2014, 27, 1359-1361.	3.3	55
18	Diamide Insecticide Target Site Specificity in the <i>Heliothis</i> and <i>Musca</i> Ryanodine Receptors Relative to Toxicity. Journal of Agricultural and Food Chemistry, 2014, 62, 4077-4082.	5.2	51

#	Article	IF	Citations
19	Glufosinate binds N-methyl-d-aspartate receptors and increases neuronal network activity in vitro. NeuroToxicology, 2014, 45, 38-47.	3.0	33
20	Insect γ-Aminobutyric Acid Receptors and Isoxazoline Insecticides: Toxicological Profiles Relative to the Binding Sites of [³ H]Fluralaner, [³ H]-4′-Ethynyl-4- <i>n</i> Journal of Agricultural and Food Chemistry, 2014, 62, 1019-1024.	5.2	57
21	Fluorescent Probes for Insect Ryanodine Receptors: Candidate Anthranilic Diamides. Molecules, 2014, 19, 4105-4114.	3.8	8
22	New GABA/Glutamate Receptor Target for [³ H]Isoxazoline Insecticide. Chemical Research in Toxicology, 2013, 26, 514-516.	3.3	81
23	Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17273-17277.	7.1	39
24	Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects. Annual Review of Entomology, 2013, 58, 99-117.	11.8	592
25	Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 636-641.	7.1	170
26	Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor. Pesticide Biochemistry and Physiology, 2013, 107, 321-326.	3.6	66
27	Newly Observed Spontaneous Activation of Ethephon as a Butyrylcholinesterase Inhibitor. Chemical Research in Toxicology, 2013, 26, 422-431.	3.3	6
28	Anticholinesterase insecticide retrospective. Chemico-Biological Interactions, 2013, 203, 221-225.	4.0	88
29	Neonicotinoid formaldehyde generators: Possible mechanism of mouse-specific hepatotoxicity/hepatocarcinogenicity of thiamethoxam. Toxicology Letters, 2013, 216, 139-145.	0.8	35
30	Cycloxaprid Insecticide: Nicotinic Acetylcholine Receptor Binding Site and Metabolism. Journal of Agricultural and Food Chemistry, 2013, 61, 7883-7888.	5.2	54
31	Characterization of the Transient Oxaphosphetane BChE Inhibitor Formed from Spontaneously Activated Ethephon. Chemical Research in Toxicology, 2013, 26, 1320-1322.	3.3	3
32	Aldehyde Oxidase Importance In Vivo in Xenobiotic Metabolism: Imidacloprid Nitroreduction in Mice. Toxicological Sciences, 2013, 133, 22-28.	3.1	54
33	The Greening of Pesticide–Environment Interactions: Some Personal Observations. Environmental Health Perspectives, 2012, 120, 487-493.	6.0	47
34	Insect Ryanodine Receptor: Distinct but Coupled Insecticide Binding Sites for [<i>N</i> -C ³ H ₃]Chlorantraniliprole, Flubendiamide, and [³ H]Ryanodine. Chemical Research in Toxicology, 2012, 25, 1571-1573.	3.3	77
35	Unique Neonicotinoid Binding Conformations Conferring Selective Receptor Interactions. Journal of Agricultural and Food Chemistry, 2011, 59, 2825-2828.	5.2	46
36	Neonicotinoid Metabolism: Compounds, Substituents, Pathways, Enzymes, Organisms, and Relevance. Journal of Agricultural and Food Chemistry, 2011, 59, 2923-2931.	5.2	265

#	Article	IF	Citations
37	Novel nicotinic action of the sulfoximine insecticide sulfoxaflor. Insect Biochemistry and Molecular Biology, 2011, 41, 432-439.	2.7	142
38	Neonicotinoid Insecticides: Oxidative Stress in Planta and Metallo-oxidase Inhibition. Journal of Agricultural and Food Chemistry, 2011, 59, 4860-4867.	5.2	41
39	GABAA receptor open-state conformation determines non-competitive antagonist binding. Toxicology and Applied Pharmacology, 2011, 250, 221-228.	2.8	12
40	Curious about Pesticide Action. Journal of Agricultural and Food Chemistry, 2011, 59, 2762-2769.	5.2	31
41	Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain. Journal of Agricultural and Food Chemistry, 2011, 59, 2808-2815.	5.2	78
42	S-Arachidonoyl-2-thioglycerol synthesis and use for fluorimetric and colorimetric assays of monoacylglycerol lipase. Bioorganic and Medicinal Chemistry, 2010, 18, 1942-1947.	3.0	9
43	Michael Elliott's billion dollar crystals and other discoveries in insecticide chemistry. Pest Management Science, 2010, 66, 1163-1170.	3.4	18
44	Neonicotinoid insecticides induce salicylate-associated plant defense responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17527-17532.	7.1	163
45	Bis-neonicotinoid insecticides: Observed and predicted binding interactions with the nicotinic receptor. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3449-3452.	2.2	27
46	Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism. Journal of Agricultural and Food Chemistry, 2009, 57, 4861-4866.	5.2	73
47	Nicotinic Agonist Binding Site Mapped by Methionine- and Tyrosine-Scanning Coupled with Azidochloropyridinyl Photoaffinity Labeling. Journal of Medicinal Chemistry, 2009, 52, 3735-3741.	6.4	17
48	Molecular Recognition of Neonicotinoid Insecticides: The Determinants of Life or Death. Accounts of Chemical Research, 2009, 42, 260-269.	15.6	152
49	Pest Toxicology: The Primary Mechanisms of Pesticide Action. Chemical Research in Toxicology, 2009, 22, 609-619.	3.3	281
50	JOHN E. CASIDA. , 2009, , 383-431.		3
51	Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5875-5878.	2.2	7 5
52	Activation of the endocannabinoid system by organophosphorus nerve agents. Nature Chemical Biology, 2008, 4, 373-378.	8.0	108
53	Organophosphate-sensitive lipases modulate brain lysophospholipids, ether lipids and endocannabinoids. Chemico-Biological Interactions, 2008, 175, 355-364.	4.0	37
54	Dual roles of brain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification. Toxicology and Applied Pharmacology, 2008, 228, 42-48.	2.8	22

#	Article	IF	CITATIONS
55	Cellular function of neuropathy target esterase in lysophosphatidylcholine action. Toxicology and Applied Pharmacology, 2008, 232, 376-383.	2.8	34
56	Comparative Metabolism and Pharmacokinetics of Seven Neonicotinoid Insecticides in Spinach. Journal of Agricultural and Food Chemistry, 2008, 56, 10168-10175.	5.2	145
57	Atypical nicotinic agonist bound conformations conferring subtype selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1728-1732.	7.1	73
58	Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7606-7611.	7.1	155
59	Insecticide interactions with .GAMMAaminobutyric acid and nicotinic receptors: predictive aspects of structural models. Journal of Pesticide Sciences, 2008, 33, 4-8.	1.4	30
60	Mapping the elusive neonicotinoid binding site. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9075-9080.	7.1	74
61	Defining Nicotinic Agonist Binding Surfaces through Photoaffinity Labeling. Biochemistry, 2007, 46, 8798-8806.	2.5	41
62	Insect Muscarinic Acetylcholine Receptor:Â Pharmacological and Toxicological Profiles of Antagonists and Agonists. Journal of Agricultural and Food Chemistry, 2007, 55, 2276-2281.	5.2	17
63	Glutathione <i>S</i> -Transferase Conjugation of Organophosphorus Pesticides Yields <i>S</i> -Phospho-, <i>S</i> -Aryl-, and <i>S</i> -Alkylglutathione Derivatives. Chemical Research in Toxicology, 2007, 20, 1211-1217.	3.3	94
64	Nitroso-Imidacloprid Irreversibly Inhibits Rabbit Aldehyde Oxidase. Chemical Research in Toxicology, 2007, 20, 1942-1946.	3.3	20
65	Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants. Toxicology and Applied Pharmacology, 2007, 224, 98-104.	2.8	27
66	Unique and Common Metabolites of Thiamethoxam, Clothianidin, and Dinotefuran in Mice. Chemical Research in Toxicology, 2006, 19, 1549-1556.	3.3	147
67	Neonicotinoid metabolic activation and inactivation established with coupled nicotinic receptor-CYP3A4 and -aldehyde oxidase systems. Toxicology Letters, 2006, 161, 108-114.	0.8	55
68	Chloropyridinyl Neonicotinoid Insecticides:Â Diverse Molecular Substituents Contribute to Facile Metabolism in Mice. Chemical Research in Toxicology, 2006, 19, 944-951.	3.3	144
69	Substrate Specificity of Rabbit Aldehyde Oxidase for Nitroguanidine and Nitromethylene Neonicotinoid Insecticides. Chemical Research in Toxicology, 2006, 19, 38-43.	3.3	40
70	Insect Nicotinic Acetylcholine Receptors:Â Neonicotinoid Binding Site Specificity Is Usually but Not Always Conserved with Varied Substituents and Species. Journal of Agricultural and Food Chemistry, 2006, 54, 3365-3371.	5.2	49
71	Serine Hydrolase KIAA1363:Â Toxicological and Structural Features with Emphasis on Organophosphate Interactions. Chemical Research in Toxicology, 2006, 19, 1142-1150.	3.3	30
72	Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice. Toxicology and Applied Pharmacology, 2006, 211, 78-83.	2.8	74

#	Article	IF	CITATIONS
73	Spontaneous Mobility of GABAA Receptor M2 Extracellular Half Relative to Noncompetitive Antagonist Action. Journal of Biological Chemistry, 2006, 281, 38871-38878.	3.4	15
74	Structural model for Â-aminobutyric acid receptor noncompetitive antagonist binding: Widely diverse structures fit the same site. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5185-5190.	7.1	146
75	NEONICOTINOID INSECTICIDE TOXICOLOGY: Mechanisms of Selective Action. Annual Review of Pharmacology and Toxicology, 2005, 45, 247-268.	9.4	1,306
76	Serine hydrolase targets of organophosphorus toxicants. Chemico-Biological Interactions, 2005, 157-158, 277-283.	4.0	155
77	Platelet-activating factor acetylhydrolase: selective inhibition by potent n-alkyl methylphosphonofluoridates. Toxicology and Applied Pharmacology, 2005, 205, 149-156.	2.8	20
78	A brain detoxifying enzyme for organophosphorus nerve poisons. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6195-6200.	7.1	49
79	Blood Acylpeptide Hydrolase Activity Is a Sensitive Marker for Exposure to Some Organophosphate Toxicants. Toxicological Sciences, 2005, 86, 291-299.	3.1	56
80	Neonicotinoid Nitroguanidine Insecticide Metabolites:Â Synthesis and Nicotinic Receptor Potency of Guanidines, Aminoguanidines, and Their Derivatives. Chemical Research in Toxicology, 2005, 18, 1479-1484.	3.3	51
81	Identification of Aldehyde Oxidase as the Neonicotinoid Nitroreductase. Chemical Research in Toxicology, 2005, 18, 317-323.	3.3	75
82	Cloning, expression, and catalytic triad of recombinant arylformamidase. Protein Expression and Purification, 2005, 44, 39-44.	1.3	18
83	Why Insecticides are More Toxic to Insects than People: The Unique Toxicology of Insects. Journal of Pesticide Sciences, 2004, 29, 81-86.	1.4	60
84	Lysophospholipase inhibition by organophosphorus toxicants. Toxicology and Applied Pharmacology, 2004, 196, 319-326.	2.8	29
85	Drosophila nicotinic receptors: evidence for imidacloprid insecticide and α-bungarotoxin binding to distinct sites. Neuroscience Letters, 2004, 371, 56-59.	2.1	24
86	Rotenone, Deguelin, Their Metabolites, and the Rat Model of Parkinson's Disease. Chemical Research in Toxicology, 2004, 17, 1540-1548.	3.3	175
87	Organophosphate Toxicology:  Safety Aspects of Nonacetylcholinesterase Secondary Targets. Chemical Research in Toxicology, 2004, 17, 983-998.	3.3	465
88	Cartap Hydrolysis Relative to Its Action at the Insect Nicotinic Channel. Journal of Agricultural and Food Chemistry, 2004, 52, 95-98.	5.2	36
89	Ability of Poplar (Populus spp.) to Detoxify Chloroacetanilide Herbicides. Water, Air and Soil Pollution, 2003, 3, 277-283.	0.8	16
90	5-Azidoepibatidine: an exceptionally potent photoaffinity ligand for neuronal $\hat{1}\pm4\hat{1}^22$ and $\hat{1}\pm7$ nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 525-527.	2,2	22

#	Article	IF	Citations
91	Reply to "Association between organophosphate exposure and hyperactivity?― Nature Genetics, 2003, 34, 235-235.	21.4	0
92	Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nature Genetics, 2003, 33, 477-485.	21.4	164
93	Major Intermediates in Organophosphate Synthesis (PCl3, POCl3, PSCl3, and Their Diethyl Esters) Are Anticholinesterase Agents Directly or on Activation. Chemical Research in Toxicology, 2003, 16, 350-356.	3.3	21
94	SELECTIVETOXICITY OFNEONICOTINOIDSATTRIBUTABLE TOSPECIFICITY OFINSECT ANDMAMMALIANNICOTINICRECEPTORS. Annual Review of Entomology, 2003, 48, 339-364.	11.8	757
95	Cannabinoid CB1 Receptor Chemical Affinity Probes: Methods Suitable for Preparation of Isopropyl [11,12-3H]Dodecylfluorophosphonate and [11,12-3H]Dodecanesulfonyl Fluoride. Synthetic Communications, 2003, 33, 2151-2159.	2.1	27
96	Nereistoxin and Cartap Neurotoxicity Attributable to Direct Block of the Insect Nicotinic Receptor/Channel. Journal of Agricultural and Food Chemistry, 2003, 51, 2646-2652.	5.2	45
97	Insecticides in Chinese Medicinal Plants:Â Survey Leading to Jacaranone, A Neurotoxicant and Glutathione-Reactive Quinol. Journal of Agricultural and Food Chemistry, 2003, 51, 2544-2547.	5.2	51
98	Synthesis of a Tritium-Labeled, Fipronil-Based, Highly Potent, Photoaffinity Probe for the GABA Receptor. Journal of Organic Chemistry, 2003, 68, 8075-8079.	3.2	32
99	The Neonicotinoid Electronegative Pharmacophore Plays the Crucial Role in the High Affinity and Selectivity for theDrosophilaNicotinic Receptor: An Anomaly for the Nicotinoid Cationâ°Ï€ Interaction Modelâ€. Biochemistry, 2003, 42, 7819-7827.	2.5	124
100	Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7983-7987.	7.1	125
101	Neonicotinoid Insecticides:Â Reduction and Cleavage of Imidacloprid Nitroimine Substituent by Liver Microsomal and Cytosolic Enzymes. Chemical Research in Toxicology, 2002, 15, 1158-1165.	3.3	60
102	Structural Features of Azidopyridinyl Neonicotinoid Probes Conferring High Affinity and Selectivity for Mammalian $\hat{l}\pm4\hat{l}^22$ and Drosophila Nicotinic Receptors. Journal of Medicinal Chemistry, 2002, 45, 2832-2840.	6.4	60
103	Imidacloprid insecticide metabolism: human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Toxicology Letters, 2002, 132, 65-70.	0.8	143
104	Insect Nicotinic Acetylcholine Receptor: Conserved Neonicotinoid Specificity of [3H]Imidacloprid Binding Site. Journal of Neurochemistry, 2002, 75, 1294-1303.	3.9	130
105	Selective Inhibitors of Fatty Acid Amide Hydrolase Relative to Neuropathy Target Esterase and Acetylcholinesterase: Toxicological Implications. Toxicology and Applied Pharmacology, 2002, 179, 57-63.	2.8	53
106	Desnitro-imidacloprid Activates the Extracellular Signal-Regulated Kinase Cascade via the Nicotinic Receptor and Intracellular Calcium Mobilization in N1E-115 Cells. Toxicology and Applied Pharmacology, 2002, 184, 180-186.	2.8	39
107	Detoxification of α- and β-Thujones (the Active Ingredients of Absinthe):  Site Specificity and Species Differences in Cytochrome P450 Oxidation in Vitro and in Vivo. Chemical Research in Toxicology, 2001, 14, 589-595.	3.3	74
108	Photoaffinity labeling of insect nicotinic acetylcholine receptors with a novel [3H]azidoneonicotinoid. Journal of Neurochemistry, 2001, 78, 1359-1366.	3.9	19

#	Article	IF	CITATIONS
109	Fipronil-based photoaffinity probe for Drosophila and human \hat{l}^23 GABA receptors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2979-2981.	2.2	14
110	Structure and diversity of insect nicotinic acetylcholine receptors. Pest Management Science, 2001, 57, 914-922.	3.4	109
111	The insecticide target in the PSST subunit of complex I. Pest Management Science, 2001, 57, 932-940.	3.4	65
112	Role of Human GABAA Receptor \hat{l}^23 Subunit in Insecticide Toxicity. Toxicology and Applied Pharmacology, 2001, 172, 233-240.	2.8	115
113	Fatty Acid Amide Hydrolase Inhibition by Neurotoxic Organophosphorus Pesticides. Toxicology and Applied Pharmacology, 2001, 173, 48-55.	2.8	102
114	Analgesic and Toxic Effects of Neonicotinoid Insecticides in Mice. Toxicology and Applied Pharmacology, 2001, 177, 77-83.	2.8	67
115	Chloropicrin dechlorination in relation to toxic action. , 2000, 14, 26-32.		24
116	Sensitivity of blood-clotting factors and digestive enzymes to inhibition by organophosphorus pesticides., 2000, 14, 51-56.		27
117	Chemical model for phosphine-induced lipid peroxidation. Pest Management Science, 2000, 56, 779-783.	3.4	32
118	Activation of extracellular signal-regulated kinases (ERK 44/42) by chlorpyrifos oxon in Chinese hamster ovary cells. Journal of Biochemical and Molecular Toxicology, 2000, 14, 346-353.	3.0	19
119	Avermectin chemistry and action: ester- and ether-type candidate photoaffinity probes. Bioorganic and Medicinal Chemistry, 2000, 8, 19-26.	3.0	6
120	Regional Modification of [3H]Ethynylbicycloorthobenzoate Binding in Mouse Brain GABAA Receptor by Endosulfan, Fipronil, and Avermectin B1a. Toxicology and Applied Pharmacology, 2000, 163, 188-194.	2.8	38
121	Imidacloprid, Thiacloprid, and Their Imine Derivatives Up-Regulate the $\hat{1}\pm4\hat{1}^22$ Nicotinic Acetylcholine Receptor in M10 Cells. Toxicology and Applied Pharmacology, 2000, 169, 114-120.	2.8	78
122	5-Azidoimidacloprid and an Acyclic Analogue as Candidate Photoaffinity Probes for Mammalian and Insect Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2000, 43, 5003-5009.	6.4	33
123	Neonicotinoid Insecticides:Â Molecular Features Conferring Selectivity for Insect versus Mammalian Nicotinic Receptors. Journal of Agricultural and Food Chemistry, 2000, 48, 6016-6024.	5.2	204
124	Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors. British Journal of Pharmacology, 1999, 127, 115-122.	5.4	123
125	Desnitroimidacloprid and Nicotine Binding Site in Rat Recombinant $\hat{l}\pm4\hat{l}^22$ Neuronal Nicotinic Acetylcholine Receptor. Pesticide Biochemistry and Physiology, 1999, 64, 55-61.	3.6	24
126	Organophosphorus pesticide-induced butyrylcholinesterase inhibition and potentiation of succinylcholine toxicity in mice., 1999, 13, 113-118.		22

#	Article	IF	CITATIONS
127	New Bioactive Flavonoids and Stilbenes in Cubé Resin Insecticide. Journal of Natural Products, 1999, 62, 205-210.	3.0	80
128	Novel and Potent 6-Chloro-3-pyridinyl Ligands for the $\hat{l}\pm4\hat{l}^22$ Neuronal Nicotinic Acetylcholine Receptorâ \in _i . Journal of Medicinal Chemistry, 1999, 42, 2227-2234.	6.4	58
129	NADH: Ubiquinone Oxidoreductase Inhibitors Block Induction of Ornithine Decarboxylase Activity in MCFâ€7 Human Breast Cancer Cells*. Basic and Clinical Pharmacology and Toxicology, 1998, 83, 214-219.	0.0	28
130	Photoaffinity radioligand for NADH:ubiquinone oxidoreductase: [S-C3H2](trifluoromethyl)diazirinyl-pyridaben. Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 41, 191-199.	1.0	13
131	Human Protoporphyrinogen Oxidase:  Relation between the Herbicide Binding Site and the Flavin Cofactor. Biochemistry, 1998, 37, 6905-6910.	2.5	12
132	Oxidative Bioactivation of Methamidophos Insecticide:Â Synthesis of N-Hydroxymethamidophos (A) Tj ETQq0 0 C Fragmentation through a Metaphosphate Analogue. Chemical Research in Toxicology, 1998, 11, 26-34.	rgBT /Ove 3.3	erlock 10 Tf 5 17
133	Mechanism for Benomyl Action as a Mitochondrial Aldehyde Dehydrogenase Inhibitor in Mice. Chemical Research in Toxicology, 1998, 11, 535-543.	3.3	43
134	Golden Age of Insecticide Research: Past, Present, or Future?. Annual Review of Entomology, 1998, 43, 1-16.	11.8	548
135	Dialkylquinonimines Validated as in Vivo Metabolites of Alachlor, Acetochlor, and Metolachlor Herbicides in Rats. Chemical Research in Toxicology, 1998, 11, 353-359.	3.3	32
136	Mechanisms for Selective Toxicity of Fipronil Insecticide and Its Sulfone Metabolite and Desulfinyl Photoproduct. Chemical Research in Toxicology, 1998, 11, 1529-1535.	3.3	306
137	Herbicide Safener-Binding Protein of Maize1. Plant Physiology, 1998, 116, 1083-1089.	4.8	42
138	Whitefly (Hemiptera: Aleyrodidae) Binding Site for Imidacloprid and Related Insecticides: A Putative Nicotinic Acetylcholine Receptor. Journal of Economic Entomology, 1997, 90, 879-882.	1.8	60
139	Synthesis of a Novel [125I]Neonicotinoid Photoaffinity Probe for theDrosophilaNicotinic Acetylcholine Receptor. Bioconjugate Chemistry, 1997, 8, 7-14.	3.6	38
140	Anomalous Structureâ^'Activity Relationships of 13-homo-13-Oxarotenoids and 13-homo-13-Oxadehydrorotenoids. Chemical Research in Toxicology, 1997, 10, 853-858.	3.3	19
141	Acephate Insecticide Toxicity:  Safety Conferred by Inhibition of the Bioactivating Carboxyamidase by the Metabolite Methamidophos. Chemical Research in Toxicology, 1997, 10, 64-69.	3.3	70
142	Role of cerebellar granule cell-specific GABAA receptor subtype in the differential sensitivity of [3H]ethynylbicycloorthobenzoate binding to GABA mimetics. Neuroscience Letters, 1997, 225, 85-88.	2.1	10
143	[125I]Azidonicotinoid photoaffinity labeling of insecticide-binding subunit of Drosophila nicotinic acetylcholine receptor. Neuroscience Letters, 1997, 237, 61-64.	2.1	30
144	Interaction of Imidacloprid Metabolites and Analogs with the Nicotinic Acetylcholine Receptor of Mouse Brain in Relation to Toxicity. Pesticide Biochemistry and Physiology, 1997, 58, 77-88.	3.6	170

#	Article	IF	CITATIONS
145	Structural modifications increase the insecticidal activity of ryanodine. Pest Management Science, 1997, 51, 33-38.	0.4	27
146	S-Methylation ofO,O-Dialkyl Phosphorodithioic Acids:ÂO,O,S-Trimethyl Phosphorodithioate and Phosphorothiolate as Metabolites of Dimethoate in Mice. Chemical Research in Toxicology, 1996, 9, 1202-1206.	3.3	17
147	Fenazaquin Acaricide Specific Binding Sites in NADH: Ubiquinone Oxidoreductase and Apparently the ATP Synthase Stalk. Pesticide Biochemistry and Physiology, 1996, 54, 135-145.	3.6	51
148	Heterocyclic Insecticides Acting at the GABA-Gated Chloride Channel: 5-Alkyl-2-arylpyrimidines and -1,3-thiazines. Pest Management Science, 1996, 46, 237-245.	0.4	15
149	Nimbolide is the Principal Cytotoxic Component of Neem-Seed Insecticide Preparations. , 1996, 48, 135-140.		23
150	[6-chloro-3-pyridylmethyl-3H] neonicotinoids as high-affinity radioligands for the nicotinic acetylcholine receptor: Preparation using NaB3H4 and LiB3H4. Journal of Labelled Compounds and Radiopharmaceuticals, 1996, 38, 971-978.	1.0	25
151	Novel Neonicotinoidâ€Agarose Affinity Column for <i>Drosophila</i> and <i>Musca</i> Nicotinic Acetylcholine Receptors. Journal of Neurochemistry, 1996, 67, 1669-1676.	3.9	56
152	Non-steroidal analogues of veratridine: Model-based design, synthesis and insecticidal activity. Pest Management Science, 1995, 44, 96-102.	0.4	7
153	Affinity probes for the GABA-gated chloride channel: 5e-tert-Butyl-2e-[4-(substituted-ethynyl)phenyl]-1,3-dithianes with photoactivatable, fluorescent, biotin, agarose and protein substituents. Bioorganic and Medicinal Chemistry, 1995, 3, 1675-1684.	3.0	9
154	STEREOSPECIFIC INTRAMOLECULAR CYCLIZATION FOR ASYMMETRIC SYNTHESIS OF (<i>RP</i>)- AND (<i>SP</i>)-ENANTIOMERS OF 2-OCTYL- AND 2-PHENYL-4 <i>H</i>)-1,3,2-BENZODIOXAPHOSPHORIN 2-OXIDES. Phosphorus, Sulfur and Silicon and the Related Elements, 1995, 102, 177-184.	1.6	11
155	S-methylation as a bioactivation mechanism for mono- and dithiocarbamate pesticides as aldehyde dehydrogenase inhibitors. Chemical Research in Toxicology, 1995, 8, 1063-1069.	3.3	43
156	Drosophila GABA-gated chloride channel: Modified [3H]EBOB binding site associated with Ala → Ser or Gly mutants of Rdl subunit. Life Sciences, 1995, 56, 757-765.	4.3	71
157	Insecticidal isomers of 4-tert-butyl-1-(4-ethynylcyclohexyl)-2,6,7-trioxabicyclo [2.2.2] octane and 5-tert-butyl-2-(4-ethynylcyclohexyl)-1,3-dithiane. Pest Management Science, 1995, 44, 69-74.	0.4	3
158	Neuropathy Target Esterase of Hen Brain: Active Site Reactions with 2â€(<i>octyl</i> àê ³ H]Octylâ€4 <i>H</i> â€1,3,2â€Benzodioxaphosphorin 2â€Oxide and 2â€Octylâ€4 <i>H</i> àê1,3,2â€Neurochemistry, 1995, 64, 1680-1687.	3.9	14
159	House fly head GABA-gated chloride channel: [3H] α-Endosulfan binding in relation to polychlorocycloalkane insecticide action. Pest Management Science, 1994, 42, 59-63.	0.4	10
160	Sulfoxidation of the Soil Fumigants Metam, Methyl Isothiocyanate, and Dazomet. Journal of Agricultural and Food Chemistry, 1994, 42, 2019-2024.	5.2	11
161	ASYMMETRIC SYNTHESIS OF (Rp)- AND (Sp)-2-ETHYL-, (Rp)-2-PENTYLOXY-, (Sp)-2-PENTYLTHIO- AND (Sp)-2-PENTYLAMINO-4H-1,3,2-BENZODIOXAPHOSPHORIN 2-OXIDES. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 88, 129-137.	1.6	10
162	Insecticide action at the GABA-gated chloride channel: Recognition, progress, and prospects. Archives of Insect Biochemistry and Physiology, 1993, 22, 13-23.	1.5	128

#	Article	IF	CITATIONS
163	Three-bond13C1H coupling constants for chrysanthemic acid and phenothrin metabolites: Detection by two-dimensional long-range13C1HJ-resolution spectroscopy. Magnetic Resonance in Chemistry, 1993, 31, 90-93.	1.9	31
164	(αS, Z, 1R, 3R)-[4′,4″-3H]cyhalothrin and -[4″,6′,-3H]4″-fluorocyhalothrin: Synthesis of candidate py radioligands for the sodium channel. Journal of Labelled Compounds and Radiopharmaceuticals, 1993, 33, 613-625.	rethroid 1.0	4
165	1,3-dithianes with acid functionalities: potent inhibitors and candidate affinity probes for the gaba-gated chloride channel. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 2671-2674.	2.2	9
166	Ryanoid Chemistry and Action. ACS Symposium Series, 1993, , 130-144.	0.5	5
167	Insecticide Binding Sites on \hat{I}^3 -Aminobutyric Acid Receptors of Insects and Mammals. ACS Symposium Series, 1993, , 126-143.	0.5	4
168	Metabolism in rats and mice of the soil fumigants metham, methyl isothiocyanate, and dazomet. Journal of Agricultural and Food Chemistry, 1993, 41, 1497-1502.	5.2	27
169	GABA-gated chloride channel: Binding site for 4′-ethynyl-4-n-[2,3-3H2]propylbicycloorthobenzoate ([3H]EBOB) in vertebrate brain and insect head. Pesticide Biochemistry and Physiology, 1992, 44, 1-8.	3.6	89
170	House fly head GABA-gated chloride channel: Toxicologically relevant binding site for avermectins coupled to site for ethynylbicycloorthobenzoate. Pesticide Biochemistry and Physiology, 1992, 43, 116-122.	3.6	50
171	2-Aryl-5-tert-butyl-1,3-dithianes and their S-oxidation products: structure-activity relationships of potent insecticides acting at the GABA-gated chloride channel. Journal of Agricultural and Food Chemistry, 1992, 40, 497-505.	5.2	32
172	Insecticidal 1,3-dithianes. Journal of Agricultural and Food Chemistry, 1992, 40, 147-151.	5.2	24
173	Insecticidal thioureas: preparation of [phenoxy-4-3H]diafenthiuron, the corresponding carbodiimide, and related compounds. Journal of Agricultural and Food Chemistry, 1992, 40, 909-913.	5.2	10
174	[3H]imidacloprid: Synthesis of a candidate radioligand for the nicotinic acetylcholine receptor. Journal of Labelled Compounds and Radiopharmaceuticals, 1992, 31, 609-613.	1.0	25
175	Recognition of tetramethylenedisulfotetramine and related sulfamides by the brain GABA-gated chloride channel and a cyclodiene-sensitive monoclonal antibody. Chemical Research in Toxicology, 1991, 4, 162-167.	3.3	37
176	Insecticidal activity of various 3-acyl and other derivatives of veracevine relative to the veratrum alkaloids veratridine and cevadine. Journal of Agricultural and Food Chemistry, 1991, 39, 1875-1881.	5.2	27
177	Alachlor and its analogs as metabolic progenitors of formaldehyde: fate of N-methoxymethyl and other N-alkoxyalkyl substituents. Journal of Agricultural and Food Chemistry, 1991, 39, 1342-1350.	5.2	21
178	House fly brain \hat{I}^3 -aminobutyric acid-gated chloride channel: target for multiple classes of insecticides. Pesticide Biochemistry and Physiology, 1991, 41, 60-65.	3.6	67
179	Interaction of 1-Methyl-4-Phenylpyridinium Ion (MPP+) and Its Analogs with the Rotenone/Piericidin Binding Site of NADH Dehydrogenase. Journal of Neurochemistry, 1991, 56, 1184-1190.	3.9	213
180	Novel selective catalytic reduction with tritium: Synthesis of the GABAA receptor radioligand 1-(4-ethynylphenyl)-4-[2,3-3H2]propyl-2,6,7-trioxabicyclo[2.2.2]octane. Journal of Labelled Compounds and Radiopharmaceuticals, 1991, 29, 829-839.	1.0	11

#	Article	IF	CITATIONS
181	STEREOCHEMISTRY OF OXIDATIVELY-INDUCED TRANSFORMATION OF DIESTER PHOSPHOROTHIOIC ACIDS AND TRIESTER PHOSPHOROTHIONATES TO DIESTER HYDROGENPHOSPHONATES. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 56, 21-26.	1.6	O
182	Pyrethroid metabolism: microsomal oxidase metabolites of (S)-bioallethrin and the six natural pyrethrins. Journal of Agricultural and Food Chemistry, 1990, 38, 529-537.	5.2	40
183	OXIDATIVELY-INDUCED FORMATION OF DIALKYL HYDROGENPHOSPHONATES FROM PHOSPHOROTHIONATES. Phosphorus, Sulfur and Silicon and the Related Elements, 1990, 54, 221-224.	1.6	2
184	1-[4-[(Trimethylsilyl)ethynyl]phenyl]-2,6,7-trioxabicyclo[2.2.2]octanes: a novel type of selective proinsecticide. Journal of Agricultural and Food Chemistry, 1990, 38, 1091-1093.	5.2	13
185	Tritritionikkomycin Z, [uracil-5-3H,pyridyl-2,4-3H2]: radiolabeling of a potent inhibitor of fungal and insect chitin synthetase. Journal of Agricultural and Food Chemistry, 1990, 38, 1712-1715.	5.2	6
186	1-(4-Ethynylphenyl)-2,6,7-trioxabicyclo[2.2.2]octanes: a new order of potency for insecticides acting at the GABA-gated chloride channel. Journal of Agricultural and Food Chemistry, 1989, 37, 213-216.	5.2	27
187	HRGC-MS studies on the microsomal oxidase metabolites of the pyrethroid insecticide S-bioallethrin. Fresenius Zeitschrift Für Analytische Chemie, 1989, 333, 743-744.	0.8	1
188	Metabolites of the prototype insecticide (2E,4E)-N-isobutyl-6-phenylhexa-2,4-dienamide. 2. Formation in mouse and rat liver microsomal systems, rat hepatocytes, and houseflies. Journal of Agricultural and Food Chemistry, 1989, 37, 781-786.	5.2	7
189	Long-range CH correlation 2D NMR spectroscopy 2â€"effect of TANGO and BIRD pulses. Magnetic Resonance in Chemistry, 1988, 26, 362-366.	1.9	11
190	Long-range CH correlation 2D NMR spectroscopy 3—long-rangeJ modulation of cross-peak intensities. Magnetic Resonance in Chemistry, 1988, 26, 367-372.	1.9	12
191	Long-range CH correlation 2D NMR spectroscopy. 4â€"Complete spectral assignments of the pesticide metaboliteS-(2,3-dihydroxy-1-propyl)glutathione. Magnetic Resonance in Chemistry, 1988, 26, 542-546.	1.9	3
192	Complete spectral assignments of cevadine and veratridine by 2D NMR techniques. Magnetic Resonance in Chemistry, 1988, 26, 980-989.	1.9	10
193	Phosphorylating intermediates in the peracid oxidation of phosphorothionates, phosphorothiolates, and phosphorodithioates. Journal of Agricultural and Food Chemistry, 1988, 36, 610-615.	5.2	26
194	Bicycloorthocarboxylates. ACS Symposium Series, 1987, , 71-82.	0.5	3
195	Structural aspects of ryanodine action and selectivity. Journal of Medicinal Chemistry, 1987, 30, 710-716.	6.4	90
196	COLOC-S: A modified COLOC sequence for selective long-range X-H correlation 2D NMR spectroscopy. Magnetic Resonance in Chemistry, 1987, 25, 837-842.	1.9	47
197	Polychlorocycloalkane insecticide-induced convulsions in mice in relation to disruption of the GABA-regulated chloride ionophore. Life Sciences, 1986, 39, 1855-1862.	4.3	83
198	Effects of insecticides and GABAergic agents on a house fly [35S]t-butylbicyclophosphorothionate binding site. Pesticide Biochemistry and Physiology, 1986, 25, 63-72.	3.6	31

#	Article	IF	CITATIONS
199	t-[3H]Butylbicycloorthobenzoate: New Radioligand Probe for the ?-Aminobutyric Acid?Regulated Chloride Ionophore. Journal of Neurochemistry, 1985, 45, 798-804.	3.9	99
200	Solubilization and Detergent Effects on Interactions of Some Drugs and Insecticides with the t-Butylbicyclophosphorothionate Binding Site Within the ?-Aminobutyric Acid Receptor-Ionophore Complex. Journal of Neurochemistry, 1985, 44, 110-116.	3.9	35
201	R-25788 Effects on Chlorsulfuron Injury and Acetohydroxyacid Synthase Activity. Weed Science, 1985, 33, 462-468.	1.5	28
202	Novel photoreactions of an insecticidal nitromethylene heterocycle. Journal of Agricultural and Food Chemistry, 1985, 33, 998-1000.	5.2	20
203	The calcium-Ryanodine receptor complex of skeletal and cardiac muscle. Biochemical and Biophysical Research Communications, 1985, 128, 449-456.	2.1	300
204	Profenofos insecticide bioactivation in relation to antidote action and the stereospecificity of acetylcholinesterase inhibition, reactivation, and aging. Toxicology and Applied Pharmacology, 1984, 73, 16-22.	2.8	31
205	9, 21-Didehydroryanodine: a new principal toxic constituent of the botanical insecticide Ryania. Journal of the Chemical Society Chemical Communications, 1984, , 1265.	2.0	41
206	Dinitroanilines as photostabilizers for pyrethroids. Journal of Agricultural and Food Chemistry, 1984, 32, 246-250.	5.2	9
207	Interactions of lindane, toxaphene and cyclodienes with brain-specific -butylbicyclophosphorothionate receptor. Life Sciences, 1984, 35, 171-178.	4.3	194
208	Synthetic pyrethroids: Toxicity and synergism on dietary exposure of Tribolium castaneum (Herbst) larvae. Pest Management Science, 1983, 14, 367-372.	0.4	22
209	Oxime ether pyrethroids and hydroxylamine ether propyrethroids: photochemistry, biological activity, and metabolism. Journal of Agricultural and Food Chemistry, 1983, 31, 1091-1096.	5.2	19
210	Acifluorfen increases the leaf content of phytoalexins and stress metabolites in several crops. Journal of Agricultural and Food Chemistry, 1983, 31, 751-755.	5.2	53
211	Pyrethroid toxicology in the frog. Pesticide Biochemistry and Physiology, 1983, 20, 217-224.	3.6	41
212	Dichloroacetamide herbicide antidotes enhance sulfate metabolism in corn roots. Pesticide Biochemistry and Physiology, 1983, 19, 350-360.	3.6	28
213	Reaction of Proposed Phosphorothiolate $<$ u>S-Oxide Intermediates with Alcohols. Phosphorous and Sulfur and the Related Elements, 1983, 18, 209-212.	0.2	13
214	Diphenyl ether herbicides: Effects of acifluorfen on phenylpropanoid biosynthesis and phenylalanine ammonia-lyase activity in spinach. Pesticide Biochemistry and Physiology, 1982, 18, 191-196.	3.6	18
215	Pyrethroid photochemistry: photooxidation reactions of the chrysanthemates phenothrin and tetramethrin. Journal of Agricultural and Food Chemistry, 1982, 30, 110-115.	5. 2	22
216	Peracid-mediated -oxidation and rearrangement of dimethylphosphoramides: plausible model for oxidative bioactivation of the carcinogen hexamethylphosphoramide (HMPA). Tetrahedron Letters, 1982, 23, 5107-5110.	1.4	13

#	Article	IF	Citations
217	Toxicological Significance of Oxidation and Rearrangement Reactions of S-Chloroallyl Thio- and Dithiocarbamate Herbicides. ACS Symposium Series, 1981, , 65-82.	0.5	7
218	Pyrethroid Esterase(s) May Contribute to Natural Pyrethroid Tolerance of Larvae of the Common Green Lacewing 1. Environmental Entomology, 1981, 10, 681-684.	1.4	77
219	Metabolism of thecis- andtrans-isomers of cypermethrin in mice. Pest Management Science, 1981, 12, 385-398.	0.4	39
220	Metabolic chemistry of pyrethroid insecticides. Pest Management Science, 1980, 11, 257-269.	0.4	89
221	Hill Reaction Inhibitors Formed on Oxidative Metabolism of Phenylurea Herbicides. Journal of Pesticide Sciences, 1980, 5, 267-270.	1.4	6
222	Bioorganotin Chemistry: Stereo- and Situselectivity in the Monooxygenase Enzyme Reactions of Cyclohexyltin Compounds. ACS Symposium Series, 1979, , 82-93.	0.5	3
223	Structure-toxicity relationships of 1-substituted-4-alkyl-2,6,7-trioxabicyclo[2.2.2.]octanes. Toxicology and Applied Pharmacology, 1979, 47, 287-293.	2.8	69
224	Relation of yolk sac membrane kynurenine formamidase inhibition to certain teratogenic effects of organophosphorus insecticides and of carbaryl and eserine in chicken embryos. Biochemical Pharmacology, 1978, 27, 2611-2615.	4.4	52
225	HERBICIDE ANTIDOTES: PROGRESS AND PROSPECTS. , 1978, , 161-164.		2
226	Species-Specificity in Enzymatic Oxidation of Pyrethroid Insecticides. Journal of Pesticide Sciences, 1978, 3, 165-168.	1.4	12
227	Photochemical Reactions of Pyrethroid Insecticides. ACS Symposium Series, 1977, , 137-146.	0.5	13
228	Toxaphene components and related compounds: preparation and toxicity of some hepta-, octa- and nonachlorobornanes, hexa- and heptachlorobornenes, and a hexachlorobornadiene. Journal of Agricultural and Food Chemistry, 1977, 25, 1394-1401.	5.2	48
229	Effects of pyrethroid structure on rates of hydrolysis and oxidation by mouse liver microsomal enzymes. Pesticide Biochemistry and Physiology, 1977, 7, 391-401.	3.6	99
230	Permethrin Metabolism in Rats and Cows and in Bean and Cotton Plants. ACS Symposium Series, 1977 , , $186-193$.	0.5	5
231	Radiosynthesis and metabolism in rats of the 1R isomers of the insecticide permethrin. Journal of Agricultural and Food Chemistry, 1976, 24, 270-276.	5. 2	47
232	Chicken embryo nad levels lowered by teratogenic organophosphorus and methylcarbamate insecticidesag. Biochemical Pharmacology, 1976, 25, 757-762.	4.4	44
233	Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxification by elevating corn root glutathione content and glutathione S-transferase activity. Pesticide Biochemistry and Physiology, 1976, 6, 442-456.	3.6	153
234	Structure-toxicity relationships of 2,6,7-trioxabicyclo[2.2.2]-octanes and related compounds. Toxicology and Applied Pharmacology, 1976, 36, 261-279.	2.8	100

#	Article	IF	CITATIONS
235	Significance of branched bridge-head substituent in toxicity of bicyclic phosphate esters Agricultural and Biological Chemistry, 1976, 40, 2113-2115.	0.3	24
236	Bioorganotin Chemistry: Biological Oxidation of Organotin Compounds. Advances in Chemistry Series, 1976, , 197-203.	0.6	15
237	Significance of Branched Bridge-head Substituent in Toxicity of Bicyclic Phosphate Esters. Agricultural and Biological Chemistry, 1976, 40, 2113-2115.	0.3	14
238	Structure-biodegradability relationships in pyrethroid insecticides. Archives of Environmental Contamination and Toxicology, 1975, 3, 491-500.	4.1	53
239	Chemical Ionization Mass Spectrometry of N-Methylcarbamate Insecticides, Some of Their Metabolites, and Related Compounds. Journal of the Association of Official Analytical Chemists, 1975, 58, 541-547.	0.2	3
240	Toxaphene toxicant A. Mixture of 2,2,5-endo,6-exo,8,8,9,10-octachlorobornane and 2,2,5-endo,6-exo,8,9,9,10-octachlorobornane. Journal of Agricultural and Food Chemistry, 1975, 23, 991-994.	5.2	48
241	Chemical Ionization Mass Spectrometry of Organophosphorus Insecticides. Journal of the Association of Official Analytical Chemists, 1974, 57, 1050-1055.	0.2	6
242	Detection and analysis of epoxides with 4-(p-nitrobenzyl)-pyridine. Bulletin of Environmental Contamination and Toxicology, 1974, 12, 759-764.	2.7	65
243	Insect pyrethroid-hydrolyzing esterases. Pesticide Biochemistry and Physiology, 1974, 4, 465-472.	3.6	86
244	Chemical and Biological O-Demethylation of Rotenone Derivatives. Agricultural and Biological Chemistry, 1973, 37, 1937-1944.	0.3	14
245	Optically pure pyrethroids labeled with deuterium and tritium in the methylcyclopentenonyl ring. Journal of Agricultural and Food Chemistry, 1972, 20, 295-299.	5.2	15
246	Metabolic fate of pyrethrin I, pyrethrin II, and allethrin administered orally to rats. Journal of Agricultural and Food Chemistry, 1972, 20, 300-313.	5.2	73
247	Rotenone photodecomposition. Journal of Agricultural and Food Chemistry, 1972, 20, 850-856.	5.2	59
248	Novel photoproducts of heptachlor epoxide, Trans-chlordane, and Trans-nonachlor. Bulletin of Environmental Contamination and Toxicology, 1972, 7, 376-382.	2.7	26
249	Photosensitizers for the accelerated degradation of chlorinated cyclodienes and other insecticide chemicals exposed to sunlight on bean leaves. Journal of Agricultural and Food Chemistry, 1971, 19, 410-416.	5.2	40
250	Response of hepatic microsomal mixed-function oxidases to various types of insecticide chemical synergists administered to mice. Biochemical Pharmacology, 1971, 20, 1607-1618.	4.4	68
251	Mixed-function oxidase involvement in the biochemistry of insecticide synergists. Journal of Agricultural and Food Chemistry, 1970, 18, 753-772.	5.2	326
252	Oxidative metabolism of pyrethroids in houseflies. Journal of Agricultural and Food Chemistry, 1969, 17, 1227-1236.	5.2	68

#	Article	IF	Citations
253	Synthesis and insecticidal activity of some pyrethroid-like compounds including ones lacking cyclopropane or ester groupings. Journal of Agricultural and Food Chemistry, 1969, 17, 931-938.	5.2	11
254	Photodecomposition of pyrethrin I, allethrin, phthalthrin, and dimethrin. Modifications in the acid moiety. Journal of Agricultural and Food Chemistry, 1969, 17, 208-215.	5.2	50
255	Uncoupling action of 2,4-dinitrophenols, 2-trifluoromethylbenzimidazoles and certain other pesticide chemicals upon mitochondria from different sources and its relation to toxicity. Biochemical Pharmacology, 1969, 18, 1389-1401.	4.4	71
256	House Fly Adenosine Triphosphatases and Their Inhibition by Insecticidal Organotin Compounds 1. Journal of Economic Entomology, 1965, 58, 392-400.	1.8	19
257	Potentiation and neurotoxicity induced by certain organophosphates. Biochemical Pharmacology, 1963, 12, 73-83.	4.4	113
258	Toxic Hazard from formulating the Insecticide Dimethoate in Methyl †Cellosolve†M. Nature, 1961, 189, 507-508.	27.8	19
259	Biological Activity of a Tri-o-Cresyl Phosphate Metabolite. Nature, 1961, 191, 1396-1397.	27.8	158