Cosimo Bambi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918747/publications.pdf

Version: 2024-02-01

50276 74163 7,658 222 46 75 citations h-index g-index papers 230 230 230 2373 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rotating regular black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 721, 329-334.	4.1	318
2	Apparent shape of super-spinning black holes. Physical Review D, 2009, 79, .	4.7	267
3	Testing the rotational nature of the supermassive object M87 * from the circularity and size of its first image. Physical Review D, 2019, 100, .	4.7	253
4	Testing black hole candidates with electromagnetic radiation. Reviews of Modern Physics, 2017, 89, .	45.6	194
5	Science with e-ASTROGAM. Journal of High Energy Astrophysics, 2018, 19, 1-106.	6.7	177
6	CONSTRAINING THE QUADRUPOLE MOMENT OF STELLAR-MASS BLACK HOLE CANDIDATES WITH THE CONTINUUM FITTING METHOD. Astrophysical Journal, 2011, 731, 121.	4.5	165
7	Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Physical Review D, 2013, 87, .	4.7	164
8	Shape and position of the shadow in the $\hat{l}'=2$ Tomimatsuâ \in "Sato spacetime. Classical and Quantum Gravity, 2010, 27, 205006.	4.0	141
9	Measuring the Kerr spin parameter of regular black holes from their shadow. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 041-041.	5.4	134
10	A CODE TO COMPUTE THE EMISSION OF THIN ACCRETION DISKS IN NON-KERR SPACETIMES AND TEST THE NATURE OF BLACK HOLE CANDIDATES. Astrophysical Journal, 2012, 761, 174.	4.5	126
11	Testing the space-time geometry around black hole candidates with the analysis of the broad <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">K</mml:mi><mml:mi>i±</mml:mi></mml:math> iron line. Physical Review D, 2013, 87, .	4.7	117
12	Wormholes and nonsingular spacetimes in Palatini <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mi><mml:mo) (stre<="" 0="" 10="" 292="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>etcħÿ="fal:</td><td>se"¹¹⁰/mml:m</td></mml:mo)></mml:mi></mml:mi></mml:math>	etcħÿ="fal:	se" ¹¹⁰ /mml:m
13	Constraining the spin and the deformation parameters from the black hole shadow. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 043-043.	5.4	109
14	Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy. Astrophysical Journal, 2017, 842, 76.	4.5	107
15	CONSTRAINTS ON THE SPACETIME GEOMETRY AROUND 10 STELLAR-MASS BLACK HOLE CANDIDATES FROM THE DISK'S THERMAL SPECTRUM. Astrophysical Journal, 2014, 797, 78.	4.5	101
16	Black Holes: A Laboratory for Testing Strong Gravity. , 2017, , .		100
17	Non-singular quantum-inspired gravitational collapse. Physical Review D, 2013, 88, .	4.7	99
18	Black hole mimicker hiding in the shadow: Optical properties of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{I}^3</mml:mi></mml:math> metric. Physical Review D, 2019, 100, .	4.7	98

#	Article	IF	Citations
19	TESTING THE KERR BLACK HOLE HYPOTHESIS. Modern Physics Letters A, 2011, 26, 2453-2468.	1.2	92
20	Concerns regarding the use of black hole shadows as standard rulers. Classical and Quantum Gravity, 2020, 37, 087001.	4.0	91
21	Probing the space-time geometry around black hole candidates with the resonance models for high-frequency QPOs and comparison with the continuum-fitting method. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 014-014.	5.4	85
22	Testing the no-hair theorem with the continuum-fitting and the iron line methods: a short review. Classical and Quantum Gravity, 2016, 33, 064001.	4.0	83
23	Terminating black holes in asymptotically free quantum gravity. European Physical Journal C, 2014, 74, 1.	3.9	78
24	$BroadK\hat{l}\pmiron \ line \ from \ accretion \ disks \ around \ traversable \ wormholes. \ Physical \ Review D, 2013, 87, .$	4.7	76
25	Search for astrophysical rotating Ellis wormholes with x-ray reflection spectroscopy. Physical Review D, 2016, 94, .	4.7	75
26	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">K</mml:mi><mml:mi>\hat{l}</mml:mi></mml:math>iron line profile from accretion disks around regular and singular exotic compact objects. Physical Review D, 2013, 88, .</pre>	4.7	73
27	Astrophysical Black Holes: A Compact Pedagogical Review. Annalen Der Physik, 2018, 530, 1700430.	2.4	73
28	Testing the Kerr nature of stellar-mass black hole candidates by combining the continuum-fitting method and the power estimate of transient ballistic jets. Physical Review D, 2012, 85, .	4.7	69
29	Iron Kα line of Kerr black holes with scalar hair. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 049-049.	5.4	69
30	Destroying the event horizon of regular black holes. Physical Review D, 2013, 87, .	4.7	68
31	Spacetime completeness of non-singular black holes in conformal gravity. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 003-003.	5.4	68
32	Testing General Relativity with the Reflection Spectrum of the Supermassive Black Hole in 1H0707-495. Physical Review Letters, 2018, 120, 051101.	7.8	68
33	Distinguishing black holes and wormholes with orbiting hot spots. Physical Review D, 2014, 90, .	4.7	66
34	Towards Precision Measurements of Accreting Black Holes Using X-Ray Reflection Spectroscopy. Space Science Reviews, 2021, 217, 1.	8.1	59
35	Toward Precision Tests of General Relativity with Black Hole X-Ray Reflection Spectroscopy. Astrophysical Journal, 2019, 875, 56.	4.5	56
36	Using iron line reverberation and spectroscopy to distinguish Kerr and non-Kerr black holes. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 025-025.	5.4	55

#	Article	IF	CITATIONS
37	Rotating regular black holes in conformal massive gravity. Physical Review D, 2020, 101, .	4.7	55
38	Public Release of RELXILL_NK: A Relativistic Reflection Model for Testing Einstein's Gravity. Astrophysical Journal, 2019, 878, 91.	4.5	54
39	Direct imaging rapidly-rotating non-Kerr black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 711, 10-14.	4.1	52
40	The Evolution of GX 339-4 in the Low-hard State as Seen by NuSTAR and Swift. Astrophysical Journal, 2018, 855, 61.	4.5	52
41	Astrophysical Wormholes. Universe, 2021, 7, 136.	2.5	52
42	Measuring the Kerr spin parameter of a non-Kerr compact object with the continuum-fitting and the iron line methods. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 055-055.	5.4	51
43	Note on the effect of a massive accretion disk in the measurements of black hole spins. Physical Review D, $2014, 89, .$	4.7	51
44	Shadows of CPR black holes and tests of the Kerr metric. European Physical Journal C, 2015, 75, 1.	3.9	51
45	Charged particle motion and electromagnetic field in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>γ</mml:mi></mml:mrow></mml:math> spacetime. Physical Review D. 2019. 99	4.7	49
46	Black holes as antimatter factories. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 013-013.	5.4	47
47	Dynamics of test particles around a Bardeen black hole surrounded by perfect fluid dark matter. Physical Review D, 2020, 102, .	4.7	47
48	Final stages of accretion onto non-Kerr compact objects. Physical Review D, 2011, 84, .	4.7	45
49	Testing conformal gravity with the supermassive black hole in 1H0707-495. Physical Review D, 2018, 98, .	4.7	44
50	Constraint on the quadrupole moment of super-massive black hole candidates from the estimate of the mean radiative efficiency of AGN. Physical Review D, $2011,83$, .	4.7	43
51	Attempt to find a correlation between the spin of stellar-mass black hole candidates and the power of steady jets: Relaxing the Kerr black hole hypothesis. Physical Review D, 2012, 86, .	4.7	42
52	Testing the Bardeen metric with the black hole candidate in Cygnus X-1. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 730, 59-62.	4.1	41
53	TESTING THE KERR NATURE OF BLACK HOLE CANDIDATES USING IRON LINE SPECTRA IN THE CPR FRAMEWORK. Astrophysical Journal, 2015, 811, 130.	4.5	41
54	Tests of the Kerr Hypothesis with GRS 1915+105 Using Different relxill Flavors. Astrophysical Journal, 2019, 884, 147.	4.5	40

#	Article	IF	Citations
55	Constraints on the Spacetime Metric around Seven "Bare―AGNs Using X-Ray Reflection Spectroscopy. Astrophysical Journal, 2019, 874, 135.	4.5	40
56	Testing the Kerr Black Hole Hypothesis Using X-Ray Reflection Spectroscopy and a Thin Disk Model with Finite Thickness. Astrophysical Journal, 2020, 899, 80.	4.5	40
57	Accretion process onto super-spinning objects. Physical Review D, 2009, 80, .	4.7	39
58	Can we constrain the maximum value for the spin parameter of the super-massive objects in galactic nuclei without knowing their actual nature?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 705, 5-8.	4.1	39
59	Scalar perturbations of nonsingular nonrotating black holes in conformal gravity. Physical Review D, 2017, 96, .	4.7	39
60	A Study of the Strong Gravity Region of the Black Hole in GS 1354–645. Astrophysical Journal, 2018, 865, 134.	4.5	38
61	Towards the use of the most massive black hole candidates in active galactic nuclei to test the Kerr paradigm. Physical Review D, 2012, 85, .	4.7	37
62	Can static regular black holes form from gravitational collapse?. European Physical Journal C, 2015, 75, 1.	3.9	37
63	Can the dynamics of test particles around charged stringy black holes mimic the spin of Kerr black holes?. Physical Review D, 2020, 102, .	4.7	37
64	Can an astrophysical black hole have a topologically non-trivial event horizon?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 706, 13-18.	4.1	36
65	Testing the nature of the black hole candidate in GRO J1655-40 with the relativistic precession model. European Physical Journal C, 2015, 75, 1.	3.9	36
66	Testing the Kerr metric with the iron line and the KRZ parametrization. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 014-014.	5.4	36
67	Testing the space-time geometry around black hole candidates with the available radio and X-ray data. The Astronomical Review, 2013, 8, 4-39.	4.0	35
68	Black hole evaporation in conformal gravity. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 033-033.	5.4	35
69	Gravitational lensing by a magnetized compact object in the presence of plasma. International Journal of Modern Physics D, 2019, 28, 2040013.	2.1	34
70	Singularity avoidance in quantum-inspired inhomogeneous dust collapse. Physical Review D, 2014, 90, .	4.7	33
71	Iron Kα line of boson stars. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 003-003.	5.4	33
72	Evolution of the spin parameter of accreting compact objects with non-Kerr quadrupole moment. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 009-009.	5.4	32

#	Article	IF	Citations
73	Testing conformal gravity with astrophysical black holes. Physical Review D, 2017, 95, .	4.7	32
74	Possible ~1 hour quasi-periodic oscillation in narrow-line Seyfert 1 galaxy MCG–06–30–15. Astronomy and Astrophysics, 2018, 616, L6.	5.1	32
75	Gravitational lensing for a boosted Kerr black hole in the presence of plasma. European Physical Journal C, 2018, 78, 1.	3.9	31
76	Detection of a quasi-periodic oscillation in \hat{l}^3 -ray light curve of the high redshift blazar B2 1520+31. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	31
77	High energy collision of two particles in wormhole spacetimes. Physical Review D, 2015, 91, .	4.7	30
78	Testing the Kerr nature of the supermassive black hole in Ark 564. Physical Review D, 2018, 98, .	4.7	30
79	Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity. Physical Review D, 2018, 97, .	4.7	30
80	Charged particle motion around a quasi-Kerr compact object immersed in an external magnetic field. Physical Review D, 2019, 99, .	4.7	30
81	Spinning super-massive objects in galactic nuclei up to a * > 1. Europhysics Letters, 2011, 94, 50002.	2.0	29
82	Testing the Kerr Black Hole Hypothesis with GX 339–4 by a Combined Analysis of Its Thermal Spectrum and Reflection Features. Astrophysical Journal, 2021, 907, 31.	4.5	29
83	Energy conditions of non-singular black hole spacetimes in conformal gravity. European Physical Journal C, 2017, 77, 1.	3.9	28
84	Reflection spectra of thick accretion discs. Monthly Notices of the Royal Astronomical Society, 2020, 491, 417-426.	4.4	28
85	Testing General Relativity with NuSTAR Data of Galactic Black Holes. Astrophysical Journal, 2021, 913, 79.	4.5	28
86	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	27
87	Charged particle motion around a magnetized Reissner-Nordström black hole. Physical Review D, 2021, 103, .	4.7	27
88	Super-spinning compact objects generated by thick accretion disks. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 031-031.	5.4	26
89	TESTING THE NATURE OF THE SUPERMASSIVE BLACK HOLE CANDIDATE IN SgrA* WITH LIGHT CURVES AND IMAGES OF HOT SPOTS. Astrophysical Journal, 2014, 787, 152.	4.5	26
90	Quasi-periodic oscillations as a tool for testing the Kerr metric: A comparison with gravitational waves and iron line. Europhysics Letters, 2016, 116, 30006.	2.0	26

#	Article	IF	CITATIONS
91	Black supernovae and black holes in non-local gravity. Journal of High Energy Physics, 2016, 2016, 1-21.	4.7	26
92	Testing Einstein-dilaton-Gauss-Bonnet gravity with the reflection spectrum of accreting black holes. Physical Review D, 2017, 95, .	4.7	26
93	Primordial black holes and the observed Galactic 511 keV line. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 670, 174-178.	4.1	25
94	Outflows from accreting super-spinars. Physical Review D, 2010, 81, .	4.7	25
95	A parametrization to test black hole candidates with the spectrum of thin disks. European Physical Journal C, 2015, 75, 1.	3.9	25
96	A revision of the generalized uncertainty principle. Classical and Quantum Gravity, 2008, 25, 105003.	4.0	24
97	Testing the existence of regions of stable orbits at small radii around black hole candidates. Physical Review D, 2013, 87, .	4.7	24
98	Note on a new parametrization for testing the Kerr metric. European Physical Journal C, 2016, 76, 1.	3.9	24
99	About the Kerr Nature of the Stellar-mass Black Hole in GRS 1915+105. Astrophysical Journal, 2019, 875, 41.	4.5	24
100	Fermi-bounce cosmology and scale-invariant power spectrum. Physical Review D, 2014, 90, .	4.7	23
101	Iron line spectroscopy with Einstein–dilaton–Gauss–Bonnet black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 781, 626-632.	4.1	23
102	Note on the Cardoso-Pani-Rico parametrization to test the Kerr black hole hypothesis. Physical Review D, $2014, 90, .$	4.7	22
103	Singularity avoidance in classical gravity from four-fermion interaction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 734, 27-30.	4.1	22
104	Unattainable extended spacetime regions in conformal gravity. Journal of High Energy Physics, 2018, 2018, 1.	4.7	22
105	Testing General Relativity with the Stellar-mass Black Hole in LMC X-1 Using the Continuum-fitting Method. Astrophysical Journal, 2020, 897, 84.	4.5	22
106	Rotating and nonlinear magnetic-charged black hole surrounded by quintessence. Physical Review D, 2020, 101, .	4.7	22
107	Modeling Bias in Supermassive Black Hole Spin Measurements. Astrophysical Journal, 2020, 895, 61.	4.5	22
108	Can we observationally test the weak cosmic censorship conjecture? European Physical Journal C, 2014, 74, 1 .	3.9	21

#	Article	IF	CITATIONS
109	Testing the Kerr black hole hypothesis: Comparison between the gravitational wave and the iron line approaches. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 254-258.	4.1	21
110	Blandford–Znajek mechanism in black holes in alternative theories of gravity. European Physical Journal C, 2016, 76, 1.	3.9	20
111	Formation and evaporation of an electrically charged black hole in conformal gravity. European Physical Journal C, 2018, 78, 1.	3.9	20
112	Testing the Kerr hypothesis using x-ray reflection spectroscopy with $\langle i \rangle NuSTAR \langle i \rangle$ data of Cygnus X-1 in the soft state. Physical Review D, 2019, 99, .	4.7	20
113	Scalar perturbations and quasi-normal modes of a nonlinear magnetic-charged black hole surrounded by quintessence. European Physical Journal C, 2019, 79, 1.	3.9	20
114	Motion of particles and gravitational lensing around the $(2+1)$ -dimensional BTZ black hole in Gaussâ \in Bonnet gravity. European Physical Journal C, 2021, 81, 1.	3.9	20
115	Testing the Kerr nature of black hole candidates using iron line reverberation mapping in the Cardoso-Pani-Rico framework. Physical Review D, 2016, 93, .	4.7	19
116	Testing the Performance and Accuracy of the relxill Model for the Relativistic X-Ray Reflection from Accretion Disks. Astrophysical Journal, 2017, 851, 57.	4.5	19
117	Distinguishing black holes and naked singularities with iron line spectroscopy. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 044-044.	5.4	19
118	Quasi-periodic oscillations in the long-term radio light curves of the blazar AO 0235+164. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5997-6006.	4.4	19
119	Charged particle motion around non-singular black holes in conformal gravity in the presence of external magnetic field. European Physical Journal C, 2020, 80, 1.	3.9	19
120	Three-dimensional simulations of the accretion process in Kerr space-time with arbitrary value of the spin parameter. Physical Review D, 2010, 82, .	4.7	18
121	Lee–Wick black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 764, 306-309.	4.1	18
122	XSPEC model for testing the Kerr black hole hypothesis using the continuum-fitting method. Physical Review D, 2019, 99, .	4.7	18
123	X-ray reflection spectroscopy with Kaluza–Klein black holes. European Physical Journal C, 2020, 80, 1.	3.9	18
124	Dynamics of charged particles and magnetic dipoles around magnetized quasi-Schwarzschild black holes. European Physical Journal C, 2021, 81, 1.	3.9	18
125	Impact of the Returning Radiation on the Analysis of the Reflection Spectra of Black Holes. Astrophysical Journal, 2021, 910, 49.	4.5	18
126	Weak gravitational lensing: A compact object with arbitrary quadrupole moment immersed in plasma. Physical Review D, 2018, 98, .	4.7	17

#	Article	IF	CITATIONS
127	Shining X-rays on asymptotically safe quantum gravity. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 047-047.	5.4	17
128	Dynamics and fundamental frequencies of test particles orbiting Kerr–Newman–NUT–Kiselev black hole in Rastall gravity. European Physical Journal Plus, 2021, 136, 1.	2.6	17
129	Collisional Penrose process in a rotating wormhole spacetime. Physical Review D, 2015, 91, .	4.7	16
130	Multi-epoch analysis of the X-ray spectrum of the active galactic nucleus in NGC 5506. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1900-1910.	4.4	16
131	On the properties of a deformed extension of the NUT space-time. European Physical Journal C, 2020, 80, 1.	3.9	16
132	Constraints on Einstein-Maxwell dilaton-axion gravity from X-ray reflection spectroscopy. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 002.	5.4	16
133	Testing general relativity with x-ray reflection spectroscopy: The Konoplya-Rezzolla-Zhidenko parametrization. Physical Review D, 2020, 102, .	4.7	16
134	X-ray spectropolarimetric measurements of the Kerr metric. European Physical Journal C, 2015, 75, 1.	3.9	15
135	Testing a class of non-Kerr metrics with hot spots orbiting SgrA*. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 020-020.	5.4	15
136	Black hole solutions in functional extensions of Born-Infeld gravity. Physical Review D, 2016, 94, .	4.7	15
137	relxill_nk: A Relativistic Reflection Model for Testing Einstein's Gravity. Universe, 2018, 4, 79.	2.5	15
138	Constraining the Johannsen deformation parameter <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>ε</mml:mi></mml:mrow><mml:mrow><mm .<="" 2019,="" 99,="" black="" d,="" data.="" hole="" physical="" review="" td="" with="" x-ray=""><td>l:mħ;⁷3<td>ւտ<mark>! 5</mark> ւտլ:mn> </td></td></mm></mml:mrow></mml:msub></mml:mrow></mml:math>	l:mħ; ⁷ 3 <td>ւտ<mark>! 5</mark> ւտլ:mn> </td>	ւտ <mark>! 5</mark> ւտ լ: mn>
139	A toy model for a baby universe inside a black hole. European Physical Journal C, 2020, 80, 1.	3.9	15
140	Modeling uncertainties in x-ray reflection spectroscopy measurements. II. Impact of the radiation from the plunging region. Physical Review D, 2020, 101, .	4.7	15
141	Implementation of a radial disk ionization profile in the relxill_nk model. Physical Review D, 2021, 103, .	4.7	15
142	Particle motion around a static axially symmetric wormhole. Physical Review D, 2021, 104, .	4.7	15
143	Modeling uncertainties in X-ray reflection spectroscopy measurements I: Impact of higher order disk images. Physical Review D, 2020, 101, .	4.7	14
144	The high energy Universe at ultra-high resolution: the power and promise of X-ray interferometry. Experimental Astronomy, 2021, 51, 1081-1107.	3.7	14

#	Article	IF	CITATIONS
145	Constraints on temporal variation of fundamental constants from GRBs. Astroparticle Physics, 2008, 29, 223-227.	4.3	13
146	Melvin universe in Born-Infeld gravity. Physical Review D, 2015, 91, .	4.7	13
147	Singularity-free black holes in conformal gravity: New observational constraints. Europhysics Letters, 2019, 125, 30002.	2.0	13
148	Testing the Kerr Black Hole Hypothesis with GRS 1716-249 by Combining the Continuum Fitting and the Iron-line Methods. Astrophysical Journal, 2022, 924, 72.	4.5	13
149	Thick disk accretion in Kerr space-time with arbitrary spin parameters. Physical Review D, 2010, 82, .	4.7	12
150	A Note on the Observational Evidence for the Existence of Event Horizons in Astrophysical Black Hole Candidates. Scientific World Journal, The, 2013, 2013, 1-4.	2.1	12
151	Constraining the Cardoso–Pani–Rico metric with future observations of SgrA*. Classical and Quantum Gravity, 2015, 32, 065005.	4.0	12
152	Impact of the reflection model on the estimate of the properties of accreting black holes. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3565-3577.	4.4	12
153	Search for traversable wormholes in active galactic nuclei using x-ray data. Physical Review D, 2020, 101, .	4.7	12
154	Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters III: Limits from stellar-mass black holes using gravitational-wave observations. Physical Review D, 2022, 105, .	4.7	12
155	Introduction to Particle Cosmology. UNITEXT for Physics, 2016, , .	0.5	11
156	Iron Kα line of Proca stars. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 014-014.	5.4	11
157	Introduction to General Relativity. Undergraduate Lecture Notes in Physics, 2018, , .	0.1	11
158	Impact of the Disk Thickness on X-Ray Reflection Spectroscopy Measurements. Astrophysical Journal, 2021, 913, 129.	4.5	11
159	Testing General Relativity with black hole X-ray data: a progress report. Arabian Journal of Mathematics, 2022, 11, 81-90.	0.9	11
160	Testing the Kerr black hole hypothesis with the continuum-fitting and the iron line methods: the case of GRSÂ1915+105. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 019.	5.4	11
161	The spins of the Galactic black holes in MAXIÂJ1535–571 and 4UÂ1630–472 from <i>Insight-HXMT</i> Monthly Notices of the Royal Astronomical Society, 2022, 512, 2082-2092.	4.4	11
162	Constraining the Kerr parameters via x-ray reflection spectroscopy. Physical Review D, 2016, 94, .	4.7	10

#	Article	IF	CITATIONS
163	Iron line spectroscopy of black holes in asymptotically safe gravity. European Physical Journal C, 2018, 78, 1.	3.9	10
164	A general study of regular and singular black hole solutions in Einstein's conformal gravity. European Physical Journal C, 2018, 78, 1.	3.9	10
165	Dark energy and the mass of galaxy clusters. Physical Review D, 2007, 75, .	4.7	9
166	Implications of primordial black holes on the first stars and the origin of the super-massive black holes. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1347-1356.	4.4	9
167	Constraining possible variations of the fine structure constant in strong gravitational fields with the $\hat{\text{Kl}}\pm$ iron line. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 034-034.	5.4	9
168	Iron <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">K</mml:mi><mml:mi>$\hat{l}\pm<$/mml:mi></mml:mi></mml:mrow></mml:math> line of Kerr black holes with Proca hair. Physical Review D, 2017, 95, .	4.7	9
169	Testing the Kerr Metric with X-Ray Reflection Spectroscopy of Mrk 335 Suzaku Data. Astrophysical Journal, 2019, 879, 80.	4.5	9
170	Thermal spectra of thin accretion discs of finite thickness around Kerr black holes. Monthly Notices of the Royal Astronomical Society, 2020, 496, 497-503.	4.4	9
171	Testing Evolution of LFQPOs with Mass Accretion Rate in GRS 1915+105 with Insight-HXMT. Astrophysical Journal, 2021, 909, 63.	4.5	9
172	Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters: Limits from supermassive black hole x-ray data. Physical Review D, 2021, 104, .	4.7	9
173	Rapidly alternating flux states of GXÂ339–4 during its 2021 outburst captured by <i>Insight</i> Ài€"HXMT. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4308-4317.	4.4	9
174	Testing the Kerr metric using X-ray reflection spectroscopy: spectral analysis of GX 339–4. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 026-026.	5.4	8
175	Gravitational Particle Production in Braneworld Cosmology. Physical Review Letters, 2007, 99, 191302.	7.8	7
176	X-ray spectropolarimetric signature of a warped disk around a stellar-mass black hole. Classical and Quantum Gravity, 2016, 33, 125015.	4.0	7
177	Testing General Relativity with Supermassive Black Holes Using X-Ray Reflection Spectroscopy. Proceedings (mdpi), 2019, 17, 2.	0.2	7
178	Testing the weak-equivalence principle near black holes. Physical Review D, 2021, 104, .	4.7	7
179	Relativistic reflection spectra of super-spinning black holes. European Physical Journal C, 2020, 80, 1.	3.9	7
180	Astrophysical Black Holes: A Review. , 2020, , .		7

#	Article	IF	CITATIONS
181	Strange stars and the cosmological constant problem. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 006-006.	5.4	6
182	Dangerous implications of a minimum length in quantum gravity. Classical and Quantum Gravity, 2008, 25, 195013.	4.0	6
183	Scattering of particles by deformed non-rotating black holes. European Physical Journal C, 2015, 75, 1.	3.9	6
184	Testing the Keplerian disk hypothesis using x-ray reflection spectroscopy. Physical Review D, 2020, 102,	4.7	6
185	Accreting Black Holes., 2020,, 15-54.		6
186	Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters. II. Limits from stellar-mass black hole x-ray data. Physical Review D, 2021, 104, .	4.7	6
187	Reflection Spectra of Accretion Disks Illuminated by Disk-like Coronae. Astrophysical Journal, 2022, 925, 51.	4.5	6
188	A Reflection Model with a Radial Disk Density Profile. Astrophysical Journal, 2021, 923, 175.	4. 5	6
189	Observational properties of rigidly rotating dust configurations. European Physical Journal C, 2017, 77, 1.	3.9	5
190	Iron line spectroscopy of black holes in vector-tensor Galileon modified gravity. Physical Review D, 2018, 98, .	4.7	5
191	Quasiharmonic oscillations of charged particles in static axially symmetric space-times immersed in a uniform magnetic field. Physical Review D, 2020, 101, . Probing the near-horizon region of Cygnus X-1 with < mml:math	4.7	5
192	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>S</mml:mi> <mml:mi><mml:mi>z</mml:mi><mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi><mml:mi>z</mml:mi><mml:mi><mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi>ac/mml:mi>c/</mml:mi></mml:mi></mml:mi></mml:mi>	4.7	3
193	Physical Review D, 2021, 103, . Reflection Features in the X-Ray Spectrum of Fairall 9 and Implications for Tests of General Relativity. Astrophysical Journal, 2020, 896, 160.	4.5	5
194	Testing SgrA* with the spectrum of its accretion structure. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 038-038.	5.4	4
195	Attempt to explain black hole spin in X-ray binaries by new physics. European Physical Journal C, 2015, 75, 1.	3.9	4
196	Gravitational blueshift from a collapsing object. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 741, 82-86.	4.1	4
197	The Disk Wind in GRS 1915+105 as Seen by Insight–Hard X-Ray Modulation Telescope. Astrophysical Journal, 2022, 933, 122.	4.5	4
198	GRAVITOMAGNETISM IN SUPERCONDUCTORS AND COMPACT STARS. International Journal of Modern Physics D, 2008, 17, 327-336.	2.1	3

#	Article	IF	CITATIONS
199	Violation of the Carter-Israel conjecture and its astrophysical implications. Journal of Physics: Conference Series, 2011, 283, 012005.	0.4	3
200	A systematic study of photoionized emission and warm absorption signatures of the NLS1 Mrk 335. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5190-5200.	4.4	3
201	Testing the Kerr paradigm with the black hole shadow. , 2017, , .		3
202	Black hole spin measurements based on a thin disc model with finite thickness – I. An example study of MCGâ~'06-30-15. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3246-3259.	4.4	3
203	Gravitational production of Kaluza-Klein states. Physical Review D, 2008, 78, .	4.7	2
204	A Note on Black Hole Information Paradox in de Sitter Spacetimes. Communications in Theoretical Physics, 2009, 52, 78-80.	2.5	2
205	A study for testing the Kerr metric with AGN iron line eclipses. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 054-054.	5.4	2
206	RELXILL_NK: A Black Hole Relativistic Reflection Model for Testing General Relativity. Proceedings (mdpi), 2019, 17, 7.	0.2	2
207	Imaging Black Holes. , 2017, , 193-205.		2
208	Axion braneworld cosmology. Physical Review D, 2009, 80, .	4.7	1
209	Relativistic astrophysics at GR20. General Relativity and Gravitation, 2014, 46, 1.	2.0	1
210	Modified gravity in three dimensional metric-affine scenarios. Physical Review D, 2015, 92, .	4.7	1
211	Testing the Kerr black hole hypothesis with RELXILL_NK. Journal of Physics: Conference Series, 2017, 942, 012004.	0.4	1
212	Non-Kerr Spacetimes., 2017,, 241-259.		1
213	An x-ray interferometry concept for ESA's Voyage 2050 programme. , 2020, , .		1
214	Testing the Nature of Astrophysical Black Hole Candidates. Springer Proceedings in Physics, 2014, , 81-87.	0.2	0
215	Quasi-periodic Oscillations. , 2017, , 181-192.		0
216	Thin Accretion Disks. , 2017, , 113-136.		0

#	Article	IF	CITATIONS
217	Testing the Kerr Paradigm with X-Ray Observations. , 2017, , 261-285.		О
218	X-Ray Reflection Spectroscopy. , 2017, , 153-179.		0
219	Tests with Other Approaches. , 2017, , 287-303.		O
220	Testing the Kerr paradigm with X-ray observations. , 2017, , .		0
221	Cosmological Models. Undergraduate Lecture Notes in Physics, 2018, , 205-221.	0.1	0
222	Testing General Relativity with Black Hole X-Ray Data. Astronomy Reports, 2021, 65, 902-905.	0.9	0