John R Fieberg

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3918635/publications.pdf
Version: 2024-02-01

108 papers	6,295 citations	39 h-index	759 g-index
116 all docs	116 docs citations	116 times ranked	5934 citing authors

1	Migration, homing and spatial ecology of common carp in interconnected lakes. Ecology of Freshwater Fish, 2022, 31, 164-176.	1.4	13
2	Conceptual and methodological advances in habitatâ $€$ selection modeling: guidelines for ecology and evolution. Ecological Applications, 2022, 32, e02470.	3.8	63
3	The use of weighted averages of Hedges' <i>d</i> in metaâ€analysis: IsÂit worth it?. Methods in Ecology and Evolution, 2022, 13, 1093-1105.	5.2	6
4	Circularâ€"linear copulae for animal movement data. Methods in Ecology and Evolution, 2022, 13, 1001-1013.	5.2	10
5	A fresh look at an old concept: home-range estimation in a tidy world. PeerJ, 2021, 9, el1031.	2.0	30
6	A â€ ${ }^{\sim}$ How toâ $€^{\text {TM }}$ guide for interpreting parameters in habitatâ $€$ selection analyses. Journal of Animal Ecology, 2021, 90, 1027-1043.	2.8	119
7	Using hidden Markov models to inform conservation and management strategies in ecosystems exhibiting alternative stable states. Journal of Applied Ecology, 2021, 58, 1069-1078.	4.0	0
8	Individual-Level Memory Is Sufficient to Create Spatial Segregation among Neighboring Colonies of Central Place Foragers. American Naturalist, 2021, 198, E37-E52.	2.1	11
9	A Perspective on the Journal of Wildlife Management. Journal of Wildlife Management, 2021, 85, 1305-1308.	1.8	5
10	Estimating the movements of terrestrial animal populations using broad-scale occurrence data. Movement Ecology, 2021, 9, 60.	2.8	8
11	Juvenile Sandhill Cranes exhibit wider ranging and more exploratory movements than adults during the breeding season. Ibis, 2020, 162, 556-562.	1.9	17
12	Accounting for individualâ€specific variation in habitatâ€selection studies: Efficient estimation of mixedâ€effects models using Bayesian or frequentist computation. Journal of Animal Ecology, 2020, 89, 80-92.	2.8	200
13	Habitat use by tiger prey in Thailandâ $€^{T M} s$ Western Forest Complex: What will it take to fill a half-full tiger landscape?. Journal for Nature Conservation, 2020, 58, 125896.	1.8	9

The role of local cavity tree density in the selection of den sites by female fishers (<i>Pekania) Tj ETQq1 10.784314 rosBT /Overlock 10

Revisiting the benefits of active approaches for restoring damaged ecosystems. A Comment on Jones HP
19 Using lorelograms to measure and model correlation in binary data: Applications to ecological
studies. Methods in Ecology and Evolution, 2019, 10, 2153-2162. 5.2 11
Survival and causeâ€specific mortality of moose calves in Northeastern Minnesota. Journal of Wildlife
1.8
26 Management, 2019, 83, 1131-1142.
1.9
Thailand's western forest complex. Ecology and Evolution, 2019, 9, 2449-2458.
21
21 Impact of prey occupancy and other ecological and anthropogenic factors on tiger distribution in
Animal movement tools (amt): R package for managing tracking data and conducting habitat selection
analyses. Ecology and Evolution, 2019, 9, 880-890.
1.9
326
Using distance sampling to estimate densities of Zebra Mussels (<i>Dreissena polymorpha</i>) in
1.8
23 early-stage invasions. Freshwater Science, 2019, 38, 856-868.
Predicting total phosphorus levels as indicators for shallow lake management. Ecological Indicators,
2019, 96, 278-287.
6.3
9

```
25 An historical overview and update of wolfâ€"moose interactions in northeastern Minnesota. Wildlife
```

Society Bulletin, 2018, 42, 40-47.
1.6
17

26 American black bears perceive the risks of crossing roads. Behavioral Ecology, 2018, 29, 667-675.
2.2

68
27 Usedâ €habitat calibration plots: a new procedure for validating species distribution, resource selection, and stepâ€selection models. Ecography, 2018, 41, 737-752.
an agricultural landscape. Ecological Modelling, 2018, 387, 205-219.

Moose movement rates are altered by wolf presence in two ecosystems. Ecology and Evolution, 2018,
1.9

19

Calibration of a rumen bolus to measure continuous internal body temperature in moose. Wildlife
1.6

12
Society Bulletin, 2018, 42, 328-337.

Factors affecting gray wolf (<i>Canis lupus</i>) encounter rate with elk (<i>Cervus elaphus</i>) in
1.0

9
32 Yellowstone National Park. Canadian Journal of Zoology, 2018, 96, 1032-1042.

33 Time series sightability modeling of animal populations. PLoS ONE, 2018, 13, e0190706.
2.5

10

Release mortality of endangered Warsaw grouper Hyporthodus nigritus: a state-space model applied to capture-recapture data. Endangered Species Research, 2018, 35, 15-22.
2.4

6

35 Estimating utilization distributions from fitted stepâ€selection functions. Ecosphere, 2017, 8, e01771.
2.2 86

```
37 A â€ ©dynamicâ€ }\mp@subsup{\epsilon}{}{TM}\mathrm{ landscape of fear: prey responses to spatiotemporal variations in predation risk across the
lunar cycle. Ecology Letters, 2017, 20, 1364-1373.
```

$6.4 \quad 114$

Range overlap between mid-continent and Eastern sandhill cranes revealed by GPS-tracking. Wildlife
$38 \quad$ Society Bulletin, 2017, 41, 489-498.
1.6

7

39 Best practices and software for the management and sharing of camera trap data for small and large
4.3 scales studies. Remote Sensing in Ecology and Conservation, 2017, 3, 158-172.

35

40 Group peer assessment for summative evaluation in a graduate-level statistics course for ecologists.
5.6

14
Assessment and Evaluation in Higher Education, 2017, 42, 1208-1220.

41 Identifying growth morphs from mixtures of size-at-age data. Fisheries Research, 2017, 185, 83-89.
$1.7 \quad 5$

42 Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data. PLoS
ONE, 2017, 12, e0185336.
2.5

57

43 Grassland birds demonstrate delayed response to largeâ€scale tree removal in central North America.
Journal of Applied Ecology, 2016, 53, 284-294.
$4.0 \quad 14$

Habitat functional response mitigates reduced foraging opportunity: implications for animal fitness
and space use. Landscape Ecology, 2016, 31, 1939-1953.

45	Relating trap capture to abundance: a hierarchical state-space model applied to black sea bass (<i>Centropristis striata</i>). ICES Journal of Marine Science, 2016, 73, 512-519.	2.5	8
46	Are American black bears in an agricultural landscape being sustained by crops?. Journal of Mammalogy, 2016, 97, 54-67.	1.3	67
47	Behavioral and physiological responses of American black bears to landscape features within an agricultural region. Ecosphere, 2015, 6, 1-21.	2.2	71
48	Does estimator choice influence our ability to detect changes in home-range size?. Animal Biotelemetry, 2015, 3, .	1.9	22
49	MMI: Multimodel inference or models with management implications?. Journal of Wildlife Management, 2015, 79, 708-718.	1.8	58

50 Do capture and survey methods influence whether marked animals are representative of unmarked
1.65
animals?. Wildlife Society Bulletin, 2015, 39, 713-720.

Establishing the link between habitat selection and animal population dynamics. Ecological
Establishing the link between habit
Monographs, 2015, 85, 413-436.
5.4

111

Growth rates and variances of unexploited wolf populations in dynamic equilibria. Wildlife Society
Bulletin, 2015, 39, 41-48.
1.6

5

Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles. Current
Biology, 2015, 25, 2278-2283.

55 Re-evaluating the northeastern Minnesota moose decline and the role of wolves. Journal of Wildlife
Management, 2014, 78, 1143-1150.

A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies. Ecology and Evolution, 2014, 4, 1903-1912.

Trends in eggshell thickness and mercury in common goldeneye and hooded merganser eggs. Wildlife Society Bulletin, 2014, 38, 9-13.

Comparison of an autumn biomass harvest with a spring prescribed burn in restored native grass fields. Wildlife Society Bulletin, 2013, 37, n/a-n/a.

Quantifying the effect of habitat availability on species distributions. Journal of Animal Ecology, 2013,
82, 1135-1145.

Abundance estimation with sightability data: a <scp>B</scp>ayesian data augmentation approach.
Methods in Ecology and Evolution, 2013, 4, 854-864.

A Long-Term Assessment of the Variability in Winter Use of Dense Conifer Cover by Female White-Tailed
Deer. PLoS ONE, 2013, 8, e65368.

Recent Population Trends of Mountain Goats in the Olympic Mountains, Washington. Northwest
Science, 2012, 86, 264-275.

Could you please phrase â€œhome rangeâ€ as a question?. Journal of Mammalogy, 2012, 93, 890-902.
1.3

145

Understanding the causes and consequences of animal movement: a cautionary note on fitting and 64 interpreting regression models with timeâ€dependent covariates. Methods in Ecology and Evolution, 2012, 3, 983-991.
65 Spending degrees of freedom in a poor economy: A case study of building a sightability model for moose in northeastern Minnesota. Journal of Wildlife Management, 2012, 76, 75-87.

Comparative interpretation of count, presenceấ"absence and point methods for species distribution models. Methods in Ecology and Evolution, 2012, 3, 177-187.
5.2

226

Comparing Effects of Lake- and Watershed-Scale Influences on Communities of Aquatic Invertebrates in Shallow Lakes. PLoS ONE, 2012, 7, e44644.

Estimating Population Abundance Using Sightability Models:<i>R</i>SightabilityModelPackage. Journal of Statistical Software, 2012, 51, .

Generalized functional responses for species distributions. Ecology, 2011, 92, 583-589.
3.2

114

A Bayesian hierarchical occupancy model for track surveys conducted in a series of linear, spatially correlated, sites. Journal of Applied Ecology, 2011, 48, 1508-1517.

Total phosphorus and piscivore mass as drivers of food web characteristics in shallow lakes. Oikos,
2011, 120, 756-765.

Estimating age-specific hazards from wildlife telemetry data. Environmental and Ecological Statistics,
2011, 18, 209-222.
Hunter perceptions and acceptance of alternative deer management regulations. Wildlife Society
Bulletin, 2011,35, 323-329.

| | KERNEL DENSITY ESTIMATORS OF HOME RANGE: SMOOTHING AND THE ALTOCORRELATION RED HERRING.
 Ecology, 2007, 88, 1059-1066. | 3.2 |
| :--- | :--- | :--- | :--- | 180

