John R Fieberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918635/publications.pdf

Version: 2024-02-01

81900 74163 6,295 108 39 75 citations g-index h-index papers 116 116 116 5934 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	QUANTIFYING HOME-RANGE OVERLAP: THE IMPORTANCE OF THE UTILIZATION DISTRIBUTION. Journal of Wildlife Management, 2005, 69, 1346-1359.	1.8	690
2	The home-range concept: are traditional estimators still relevant with modern telemetry technology?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2221-2231.	4.0	389
3	Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecology and Evolution, 2019, 9, 880-890.	1.9	326
4	Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2187-2200.	4.0	300
5	Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles. Current Biology, 2015, 25, 2278-2283.	3.9	257
6	Correlation and studies of habitat selection: problem, red herring or opportunity?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2233-2244.	4.0	228
7	Comparative interpretation of count, presence–absence and point methods for species distribution models. Methods in Ecology and Evolution, 2012, 3, 177-187.	5.2	226
8	Stochastic matrix models for conservation and management: a comparative review of methods. Ecology Letters, 2001, 4, 244-266.	6.4	224
9	Accounting for individualâ€specific variation in habitatâ€selection studies: Efficient estimation of mixedâ€effects models using Bayesian or frequentist computation. Journal of Animal Ecology, 2020, 89, 80-92.	2.8	200
10	WHEN IS IT MEANINGFUL TO ESTIMATE AN EXTINCTION PROBABILITY?. Ecology, 2000, 81, 2040-2047.	3.2	184
11	KERNEL DENSITY ESTIMATORS OF HOME RANGE: SMOOTHING AND THE AUTOCORRELATION RED HERRING. Ecology, 2007, 88, 1059-1066.	3.2	180
12	Precision of Population Viability Analysis. Conservation Biology, 2002, 16, 258-261.	4.7	164
13	Could you please phrase "home range―as a question?. Journal of Mammalogy, 2012, 93, 890-902.	1.3	145
14	A â€~How to' guide for interpreting parameters in habitatâ€selection analyses. Journal of Animal Ecology, 2021, 90, 1027-1043.	2.8	119
15	Generalized functional responses for species distributions. Ecology, 2011, 92, 583-589.	3.2	114
16	A â€~dynamic' landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecology Letters, 2017, 20, 1364-1373.	6.4	114
17	Establishing the link between habitat selection and animal population dynamics. Ecological Monographs, 2015, 85, 413-436.	5.4	111
18	Estimating utilization distributions from fitted stepâ€selection functions. Ecosphere, 2017, 8, e01771.	2.2	86

#	Article	IF	CITATIONS
19	What time is it? Choice of time origin and scale in extended proportional hazards models. Ecology, 2009, 90, 1687-1697.	3.2	85
20	Quantifying the effect of habitat availability on species distributions. Journal of Animal Ecology, 2013, 82, 1135-1145.	2.8	85
21	Comparing Global Positioning System and Very High Frequency Telemetry Home Ranges of Whiteâ€Tailed Deer. Journal of Wildlife Management, 2009, 73, 779-787.	1.8	80
22	Integrated Population Modeling of Black Bears in Minnesota: Implications for Monitoring and Management. PLoS ONE, 2010, 5, e12114.	2.5	80
23	A Long-Term Age-Specific Survival Analysis of Female White-Tailed Deer. Journal of Wildlife Management, 2006, 70, 1556-1568.	1.8	75
24	USING PVA FOR MANAGEMENT DESPITE UNCERTAINTY: EFFECTS OF HABITAT, HATCHERIES, AND HARVEST ON SALMON. Ecology, 2003, 84, 1359-1369.	3.2	73
25	Behavioral and physiological responses of American black bears to landscape features within an agricultural region. Ecosphere, 2015, 6, 1-21.	2.2	71
26	American black bears perceive the risks of crossing roads. Behavioral Ecology, 2018, 29, 667-675.	2.2	68
27	Regression modelling of correlated data in ecology: subjectâ€specific and population averaged response patterns. Journal of Applied Ecology, 2009, 46, 1018-1025.	4.0	67
28	Are American black bears in an agricultural landscape being sustained by crops?. Journal of Mammalogy, 2016, 97, 54-67.	1.3	67
29	Living on the Edge: Viability of Moose in Northeastern Minnesota. Journal of Wildlife Management, 2010, 74, 1013-1023.	1.8	65
30	Conceptual and methodological advances in habitatâ€selection modeling: guidelines for ecology and evolution. Ecological Applications, 2022, 32, e02470.	3.8	63
31	Understanding Variation in Autumn Migration of Northern White-Tailed Deer by Long-Term Study. Journal of Mammalogy, 2008, 89, 1529-1539.	1.3	62
32	Assessing uncertainty in ecological systems using global sensitivity analyses: a case example of simulated wolf reintroduction effects on elk. Ecological Modelling, 2005, 187, 259-280.	2.5	58
33	MMI: Multimodel inference or models with management implications?. Journal of Wildlife Management, 2015, 79, 708-718.	1.8	58
34	Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data. PLoS ONE, 2017, 12, e0185336.	2.5	57
35	Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecological Modelling, 2018, 387, 205-219.	2.5	52
36	Habitat functional response mitigates reduced foraging opportunity: implications for animal fitness and space use. Landscape Ecology, 2016, 31, 1939-1953.	4.2	50

#	Article	IF	Citations
37	Understanding margins of safe capture, chemical immobilization, and handling of free-ranging white-tailed deer. Wildlife Society Bulletin, 2005, 33, 677-687.	1.6	45
38	Resampling-based methods for biologists. PeerJ, 2020, 8, e9089.	2.0	44
39	Spending degrees of freedom in a poor economy: A case study of building a sightability model for moose in northeastern Minnesota. Journal of Wildlife Management, 2012, 76, 75-87.	1.8	42
40	A Bayesian hierarchical occupancy model for track surveys conducted in a series of linear, spatially correlated, sites. Journal of Applied Ecology, 2011, 48, 1508-1517.	4.0	40
41	Usedâ€habitat calibration plots: a new procedure for validating species distribution, resource selection, and stepâ€selection models. Ecography, 2018, 41, 737-752.	4.5	36
42	Utilization Distribution Estimation Using Weighted Kernel Density Estimators. Journal of Wildlife Management, 2007, 71, 1669-1675.	1.8	35
43	Best practices and software for the management and sharing of camera trap data for small and large scales studies. Remote Sensing in Ecology and Conservation, 2017, 3, 158-172.	4.3	35
44	A fresh look at an old concept: home-range estimation in a tidy world. PeerJ, 2021, 9, e11031.	2.0	30
45	Survival and causeâ€specific mortality of moose calves in Northeastern Minnesota. Journal of Wildlife Management, 2019, 83, 1131-1142.	1.8	26
46	Re-evaluating the northeastern Minnesota moose decline and the role of wolves. Journal of Wildlife Management, 2014, 78, 1143-1150.	1.8	23
47	Does estimator choice influence our ability to detect changes in home-range size?. Animal Biotelemetry, 2015, 3, .	1.9	22
48	Impact of prey occupancy and other ecological and anthropogenic factors on tiger distribution in Thailand's western forest complex. Ecology and Evolution, 2019, 9, 2449-2458.	1.9	21
49	Hunter perceptions and acceptance of alternative deer management regulations. Wildlife Society Bulletin, 2011, 35, 323-329.	1.6	20
50	Computational Reproducibility in The Wildlife Society's Flagship Journals. Journal of Wildlife Management, 2020, 84, 1012-1017.	1.8	20
51	Moose movement rates are altered by wolf presence in two ecosystems. Ecology and Evolution, 2018, 8, 9017-9033.	1.9	19
52	Violence victimization experiences of pregnant prisoners American Journal of Orthopsychiatry, 1999, 69, 392-397.	1.5	17
53	Influences of forest harvest and environmental gradients on aquatic invertebrate communities of seasonal ponds. Wetlands, 2009, 29, 884-895.	1.5	17
54	An historical overview and update of wolf–moose interactions in northeastern Minnesota. Wildlife Society Bulletin, 2018, 42, 40-47.	1.6	17

#	Article	IF	CITATIONS
55	Juvenile Sandhill Cranes exhibit wider ranging and more exploratory movements than adults during the breeding season. Ibis, 2020, 162, 556-562.	1.9	17
56	Exploring Migration Data Using Intervalâ€Censored Timeâ€toâ€Event Models. Journal of Wildlife Management, 2008, 72, 1211-1219.	1.8	16
57	Understanding the causes and consequences of animal movement: a cautionary note on fitting and interpreting regression models with timeâ€dependent covariates. Methods in Ecology and Evolution, 2012, 3, 983-991.	5.2	15
58	Comparing Effects of Lake- and Watershed-Scale Influences on Communities of Aquatic Invertebrates in Shallow Lakes. PLoS ONE, 2012, 7, e44644.	2.5	15
59	Black Tern Nest Habitat Selection and Factors Affecting Nest Success in Northwestern Minnesota. Waterbirds, 2007, 30, 1-9.	0.3	14
60	Variance of Stratified Survey Estimators With Probability of Detection Adjustments. Journal of Wildlife Management, 2008, 72, 837-844.	1.8	14
61	Grassland birds demonstrate delayed response to largeâ€scale tree removal in central North America. Journal of Applied Ecology, 2016, 53, 284-294.	4.0	14
62	Group peer assessment for summative evaluation in a graduate-level statistics course for ecologists. Assessment and Evaluation in Higher Education, 2017, 42, 1208-1220.	5.6	14
63	Estimating Population Abundance Using Sightability Models: <i>R</i> SightabilityModel Package. Journal of Statistical Software, 2012, 51, .	3.7	14
64	Uncovering stateâ€dependent relationships in shallow lakes using Bayesian latent variable regression. Ecological Applications, 2018, 28, 309-322.	3.8	13
65	Within Reach? Habitat Availability as a Function of Individual Mobility and Spatial Structuring. American Naturalist, 2020, 195, 1009-1026.	2.1	13
66	Migration, homing and spatial ecology of common carp in interconnected lakes. Ecology of Freshwater Fish, 2022, 31, 164-176.	1.4	13
67	A Long-Term Assessment of the Variability in Winter Use of Dense Conifer Cover by Female White-Tailed Deer. PLoS ONE, 2013, 8, e65368.	2.5	13
68	Cost and Precision Functions for Aerial Quadrat Surveys: a Case Study of Ring-Necked Ducks in Minnesota. Journal of Wildlife Management, 2010, 74, 342-349.	1.8	12
69	Abundance estimation with sightability data: a <scp>B</scp> ayesian data augmentation approach. Methods in Ecology and Evolution, 2013, 4, 854-864.	5.2	12
70	Calibration of a rumen bolus to measure continuous internal body temperature in moose. Wildlife Society Bulletin, 2018, 42, 328-337.	1.6	12
71	Using lorelograms to measure and model correlation in binary data: Applications to ecological studies. Methods in Ecology and Evolution, 2019, 10, 2153-2162.	5.2	11
72	Individual-Level Memory Is Sufficient to Create Spatial Segregation among Neighboring Colonies of Central Place Foragers. American Naturalist, 2021, 198, E37-E52.	2.1	11

#	Article	IF	CITATIONS
73	When Is It Meaningful to Estimate an Extinction Probability?. Ecology, 2000, 81, 2040.	3.2	11
74	Translating Bait Preference to Capture Success of Northern White‶ailed Deer. Journal of Wildlife Management, 2008, 72, 555-560.	1.8	10
75	Time series sightability modeling of animal populations. PLoS ONE, 2018, 13, e0190706.	2.5	10
76	Circular–linear copulae for animal movement data. Methods in Ecology and Evolution, 2022, 13, 1001-1013.	5.2	10
77	DOES MALLARD CLUTCH SIZE VARY WITH LANDSCAPE COMPOSITION: A DIFFERENT VIEW. The Wilson Bulletin, 2003, 115, 409-413.	0.5	9
78	Factors affecting gray wolf (<i>Canis lupus</i>) encounter rate with elk (<i>Cervus elaphus</i>) in Yellowstone National Park. Canadian Journal of Zoology, 2018, 96, 1032-1042.	1.0	9
79	Predicting total phosphorus levels as indicators for shallow lake management. Ecological Indicators, 2019, 96, 278-287.	6.3	9
80	Habitat use by tiger prey in Thailand's Western Forest Complex: What will it take to fill a half-full tiger landscape?. Journal for Nature Conservation, 2020, 58, 125896.	1.8	9
81	Total phosphorus and piscivore mass as drivers of food web characteristics in shallow lakes. Oikos, 2011, 120, 756-765.	2.7	8
82	Estimating age-specific hazards from wildlife telemetry data. Environmental and Ecological Statistics, 2011, 18, 209-222.	3 . 5	8
83	Relating trap capture to abundance: a hierarchical state-space model applied to black sea bass (<i>Centropristis striata</i>). ICES Journal of Marine Science, 2016, 73, 512-519.	2.5	8
84	Utility of radioâ€ŧelemetry data for improving statistical population reconstruction. Journal of Wildlife Management, 2017, 81, 535-544.	1.8	8
85	Estimating the movements of terrestrial animal populations using broad-scale occurrence data. Movement Ecology, 2021, 9, 60.	2.8	8
86	Design and Analysis of Simple Choice Surveys for Natural Resource Management. Journal of Wildlife Management, 2010, 74, 871-879.	1.8	7
87	A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies. Ecology and Evolution, 2014, 4, 1903-1912.	1.9	7
88	Range overlap between mid-continent and Eastern sandhill cranes revealed by GPS-tracking. Wildlife Society Bulletin, 2017, 41, 489-498.	1.6	7
89	Role of Parameter Uncertainty in Assessing Harvest Strategies. North American Journal of Fisheries Management, 2004, 24, 459-474.	1.0	6
90	Revisiting the benefits of active approaches for restoring damaged ecosystems. A Comment on Jones HP <i>et al.</i> 2018 Restoration and repair of Earth's damaged ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182928.	2.6	6

#	Article	IF	CITATIONS
91	Using distance sampling to estimate densities of Zebra Mussels (<i>Dreissena polymorpha</i>) in early-stage invasions. Freshwater Science, 2019, 38, 856-868.	1.8	6
92	Release mortality of endangered Warsaw grouper Hyporthodus nigritus: a state-space model applied to capture-recapture data. Endangered Species Research, 2018, 35, 15-22.	2.4	6
93	The use of weighted averages of Hedges' <i>d</i> in metaâ€analysis: IsÂit worth it?. Methods in Ecology and Evolution, 2022, 13, 1093-1105.	5.2	6
94	Do capture and survey methods influence whether marked animals are representative of unmarked animals?. Wildlife Society Bulletin, 2015, 39, 713-720.	1.6	5
95	Growth rates and variances of unexploited wolf populations in dynamic equilibria. Wildlife Society Bulletin, 2015, 39, 41-48.	1.6	5
96	Identifying growth morphs from mixtures of size-at-age data. Fisheries Research, 2017, 185, 83-89.	1.7	5
97	A Perspective on the Journal of Wildlife Management. Journal of Wildlife Management, 2021, 85, 1305-1308.	1.8	5
98	Recent Population Trends of Mountain Goats in the Olympic Mountains, Washington. Northwest Science, 2012, 86, 264-275.	0.2	3
99	Cost-Effectiveness of Single-Versus Double-Cylinder Over-Water Nest Structures. Wildlife Society Bulletin, 2006, 34, 647-655.	1.6	2
100	Effects of Supplemental Food and Experience on Winter Survival of Transplanted Wild Turkeys. Wilson Journal of Ornithology, 2009, 121, 366-377.	0.2	2
101	Comparison of an autumn biomass harvest with a spring prescribed burn in restored native grass fields. Wildlife Society Bulletin, 2013, 37, n/a-n/a.	1.6	2
102	Population viability analysis. Journal of Biogeography, 2004, 31, 515-516.	3.0	1
103	Thinking Like a Duck: Fall Lake Use and Movement Patterns of Juvenile Ring-Necked Ducks before Migration. PLoS ONE, 2014, 9, e88597.	2.5	1
104	Trends in eggshell thickness and mercury in common goldeneye and hooded merganser eggs. Wildlife Society Bulletin, 2014, 38, 9-13.	1.6	1
105	The role of local cavity tree density in the selection of den sites by female fishers (<i>Pekania) Tj ETQq1 1 0.7843</i>	14.rgBT /0	Overlock 10
106	The role of variability and uncertainty in testing hypotheses involving parameters in stochastic demographic models. Canadian Journal of Zoology, 2006, 84, 1698-1701.	1.0	0
107	Using hidden Markov models to inform conservation and management strategies in ecosystems exhibiting alternative stable states. Journal of Applied Ecology, 2021, 58, 1069-1078.	4.0	0
108	Sandhill crane colt survival in Minnesota. Journal of Fish and Wildlife Management, 0, , .	0.9	0