
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consolidation of clay-rich earthen building materials: A comparative study at the Alhambra fortress (Spain). Journal of Building Engineering, 2022, 50, 104081.	3.4	9
2	Degradation and conservation of clay-containing stone: A review. Construction and Building Materials, 2022, 330, 127226.	7.2	17
3	Protection and Consolidation of Stone Heritage by Bacterial Carbonatogenesis. , 2021, , 281-299.		6
4	Stabilization of Calcium Oxalate Precursors during the Pre- and Post-Nucleation Stages with Poly(acrylic acid). Nanomaterials, 2021, 11, 235.	4.1	5
5	Weathering of serpentinite stone due to in situ generation of calcium and magnesium sulfates. Construction and Building Materials, 2021, 280, 122402.	7.2	7
6	Citrate Stabilizes Hydroxylapatite Precursors: Implications for Bone Mineralization. ACS Biomaterials Science and Engineering, 2021, 7, 2346-2357.	5.2	15
7	Carbonation of calcium-magnesium pyroxenes: Physical-chemical controls and effects of reaction-driven fracturing. Geochimica Et Cosmochimica Acta, 2021, 304, 258-280.	3.9	14
8	Degradation of ancient Maya carved tuff stone at Copan and its bacterial bioconservation. Npj Materials Degradation, 2021, 5, .	5.8	9
9	Synthesis of high surface area CaSO ₄ ·0.5H ₂ O nanorods using calcium ethoxide as precursor. Chemical Communications, 2021, 57, 7304-7307.	4.1	6
10	Kinetics and Mechanisms of Acidâ€pH Weathering of Pyroxenes. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009711.	2.5	7
11	Understanding kinetics and mechanisms of pyroxenes weathering. , 2021, , .		О
12	Virtual environments of teaching learning for training in experimental techniques. Innovation in multidisciplinary groups. Advances in Building Education, 2021, 5, 27.	0.1	3
13	Bacterial Diversity Evolution in Maya Plaster and Stone Following a Bio-Conservation Treatment. Frontiers in Microbiology, 2020, 11, 599144.	3.5	19
14	CO2 sequestration and simultaneous zeolite production by carbonation of coal fly ash: Impact on the trapping of toxic elements. Journal of CO2 Utilization, 2020, 40, 101263.	6.8	19
15	Nonclassical Crystallization of Calcium Hydroxide via Amorphous Precursors and the Role of Additives. Crystal Growth and Design, 2020, 20, 4418-4432.	3.0	29
16	Reaction-Induced Fracturing during Silicate Weathering and Carbonation. , 2020, , .		0
17	Bioinspired Alkoxysilane Conservation Treatments for Building Materials Based on Amorphous Calcium Carbonate and Oxalate Nanoparticles. ACS Applied Nano Materials, 2019, 2, 4954-4967.	5.0	20
18	New polymer-based treatments for the prevention of damage by salt crystallization in stone. Materials and Structures/Materiaux Et Constructions. 2019. 52. 1.	3.1	2

#	Article	IF	CITATIONS
19	Reaction of pseudowollastonite with carbonate-bearing fluids: Implications for CO2 mineral sequestration. Chemical Geology, 2019, 524, 158-173.	3.3	17
20	The multiple roles of carbonic anhydrase in calcium carbonate mineralization. CrystEngComm, 2019, 21, 7407-7423.	2.6	23
21	Kinetic effect of carbonic anhydrase enzyme on the carbonation reaction of lime mortar. International Journal of Architectural Heritage, 2018, 12, 779-789.	3.1	22
22	Nanolimes: from synthesis to application. Pure and Applied Chemistry, 2018, 90, 523-550.	1.9	80
23	Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event. Atmospheric Chemistry and Physics, 2018, 18, 10089-10122.	4.9	48
24	The Carbonation of Wollastonite: A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration. Minerals (Basel, Switzerland), 2018, 8, 209.	2.0	34
25	A non-classical view on calcium oxalate precipitation and the role of citrate. Nature Communications, 2017, 8, 768.	12.8	99
26	Crystallization and Colloidal Stabilization of Ca(OH) ₂ in the Presence of Nopal Juice (<i>Opuntia ficus indica</i>): Implications in Architectural Heritage Conservation. Langmuir, 2017, 33, 10936-10950.	3.5	39
27	Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nature Communications, 2017, 8, 279.	12.8	83
28	Effectiveness of oxalic acid treatments for the protection of marble surfaces. Materials and Design, 2017, 115, 82-92.	7.0	42
29	Hydration Effects on the Stability of Calcium Carbonate Pre-Nucleation Species. Minerals (Basel,) Tj ETQq1 1 0.73	34314 rgB 2.0	T /Qverlock
30	Reactions between minerals and aqueous solutions. , 2017, , 419-467.		5
31	Exploring the effect of poly(acrylic acid) on pre- and post-nucleation BaSO ₄ species: new insights into the mechanisms of crystallization control by polyelectrolytes. CrystEngComm, 2016, 18, 2830-2842.	2.6	24
32	Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes. Langmuir, 2016, 32, 5183-5194.	3.5	62
33	Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. Journal of Structural Biology, 2016, 196, 260-287.	2.8	74
34	Nonclassical crystallization in vivo et in vitro (I): Process-structure-property relationships of nanogranular biominerals. Journal of Structural Biology, 2016, 196, 244-259.	2.8	60
35	Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation. CrystEngComm, 2016, 18, 6594-6607.	2.6	83
36	Hydration effects on gypsum dissolution revealed by in situ nanoscale atomic force microscopy observations. Geochimica Et Cosmochimica Acta, 2016, 179, 110-122.	3.9	23

#	Article	IF	CITATIONS
37	Control of silicate weathering by interface-coupled dissolution-precipitation processes at the mineral-solution interface. Geology, 2016, 44, 567-570.	4.4	68
38	Direct Nanoscale Imaging Reveals the Growth of Calcite Crystals via Amorphous Nanoparticles. Crystal Growth and Design, 2016, 16, 1850-1860.	3.0	89
39	Stone Consolidation by Bacterial Carbonatogenesis: Evaluation of in situ Applications. Restoration of Buildings and Monuments, 2015, 21, 9-20.	0.6	19
40	Mineralogical Evolution of Di- and Trioctahedral Smectites in Highly Alkaline Environments. Clays and Clay Minerals, 2015, 63, 414-431.	1.3	6
41	The Sierra Nevada serpentinites: the serpentinites most used in Spanish heritage buildings. Geological Society Special Publication, 2015, 407, 101-108.	1.3	8
42	Formation of amorphous calcium carbonate and its transformation into mesostructured calcite. CrystEngComm, 2015, 17, 58-72.	2.6	169
43	Influence of organic matter on the reactivity of clay minerals in highly alkaline environments. Applied Clay Science, 2015, 111, 27-36.	5.2	18
44	Alkaline activation as an alternative method for the consolidation of earthen architecture. Journal of Cultural Heritage, 2015, 16, 461-469.	3.3	54
45	The Mechanism of Vapor Phase Hydration of Calcium Oxide: Implications for CO ₂ capture. Environmental Science & Technology, 2014, 48, 12411-12418.	10.0	21
46	Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. Acta Biomaterialia, 2014, 10, 3844-3854.	8.3	56
47	Control of Crystal Nucleation and Growth by Additives. Elements, 2013, 9, 203-209.	0.5	40
48	Alcohol Dispersions of Calcium Hydroxide Nanoparticles for Stone Conservation. Langmuir, 2013, 29, 11457-11470.	3.5	169
49	Template-Assisted Crystallization of Sulfates onto Calcite: Implications for the Prevention of Salt Damage. Crystal Growth and Design, 2013, 13, 40-51.	3.0	16
50	Dissolution and Carbonation of Portlandite [Ca(OH) ₂] Single Crystals. Environmental Science & Technology, 2013, 47, 11342-11349.	10.0	105
51	Mechanism of leached layer formation during chemical weathering of silicate minerals. Geology, 2012, 40, 947-950.	4.4	127
52	Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation. Applied and Environmental Microbiology, 2012, 78, 4017-4029.	3.1	174
53	In situ nanoscale observations of the dissolution of dolomite cleavage surfaces. Geochimica Et Cosmochimica Acta, 2012, 80, 1-13.	3.9	53
54	Signatures in magnetites formed by (Ca,Mg,Fe)CO3 thermal decomposition: Terrestrial and extraterrestrial implications. Geochimica Et Cosmochimica Acta, 2012, 87, 69-80.	3.9	15

#	Article	IF	CITATIONS
55	Damage Mechanisms of Porous Materials due to In-Pore Salt Crystallization. Physical Review Letters, 2012, 109, 265503.	7.8	77
56	The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses. American Mineralogist, 2012, 97, 38-51.	1.9	88
57	Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime. Journal of Materials Science, 2012, 47, 6151-6165.	3.7	207
58	lon-specific effects on the kinetics of mineral dissolution. Chemical Geology, 2011, 281, 364-371.	3.3	64
59	Effect of pH on calcite growth at constant ratio and supersaturation. Geochimica Et Cosmochimica Acta, 2011, 75, 284-296.	3.9	84
60	An integrated methodology for salt damage assessment and remediation: the case of San Jerónimo Monastery (Granada, Spain). Environmental Earth Sciences, 2011, 63, 1475-1486.	2.7	34
61	Bioprotection. Encyclopedia of Earth Sciences Series, 2011, , 185-189.	0.1	5
62	Bioconservation of Deteriorated Monumental Calcarenite Stone and Identification of Bacteria with Carbonatogenic Activity. Microbial Ecology, 2010, 60, 39-54.	2.8	72
63	Suppression of salt weathering of porous limestone by borax-induced promotion of sodium and magnesium sulphate crystallization. Geological Society Special Publication, 2010, 331, 93-102.	1.3	5
64	Microstructure and Rheology of Lime Putty. Langmuir, 2010, 26, 3868-3877.	3.5	56
65	Bacterial biomineralization: new insights from <i>Myxococcus</i> -induced mineral precipitation. Geological Society Special Publication, 2010, 336, 31-50.	1.3	85
66	An atomic force microscopy study of calcite dissolution in saline solutions: The role of magnesium ions. Geochimica Et Cosmochimica Acta, 2009, 73, 3201-3217.	3.9	99
67	Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 2009, 94, 578-593.	1.9	344
68	Sulfation of calcitic and dolomitic lime mortars in the presence of diesel particulate matter. Environmental Geology, 2008, 56, 741-752.	1.2	46
69	Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). Journal of Cultural Heritage, 2008, 9, 66-76.	3.3	77
70	Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. International Biodeterioration and Biodegradation, 2008, 62, 352-363.	3.9	93
71	Role of clay minerals in the physicomechanical deterioration of sandstone. Journal of Geophysical Research, 2008, 113, .	3.3	47
72	Interaction between Epsomite Crystals and Organic Additives. Crystal Growth and Design, 2008, 8, 2665-2673.	3.0	23

5

#	Article	IF	CITATIONS
73	Alkaline treatment of clay minerals from the Alhambra Formation: Implications for the conservation of earthen architecture. Applied Clay Science, 2008, 39, 122-132.	5.2	54
74	Lime Putties and Mortars. Studies in Conservation, 2008, 53, 9-23.	1.1	36
75	Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere, 2007, 68, 1929-1936.	8.2	117
76	Bacterially mediated mineralization of vaterite. Geochimica Et Cosmochimica Acta, 2007, 71, 1197-1213.	3.9	291
77	Mechanism and Kinetics of Dehydration of Epsomite Crystals Formed in the Presence of Organic Additives. Journal of Physical Chemistry B, 2007, 111, 41-52.	2.6	33
78	The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environmental Geology, 2007, 52, 269-281.	1.2	193
79	Sodium Sulfate Crystallization in the Presence of Phosphonates:  Implications in Ornamental Stone Conservation. Crystal Growth and Design, 2006, 6, 1575-1583.	3.0	43
80	Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmospheric Environment, 2006, 40, 6905-6917.	4.1	67
81	Nanostructure and Irreversible Colloidal Behavior of Ca(OH)2:Â Implications in Cultural Heritage Conservation. Langmuir, 2005, 21, 10948-10957.	3.5	152
82	Influence of mineralogy and firing temperature on the porosity of bricks. Journal of the European Ceramic Society, 2004, 24, 547-564.	5.7	334
83	Precipitation and Growth Morphology of Calcium Carbonate Induced by Myxococcus Xanthus: Implications for Recognition of Bacterial Carbonates. Journal of Sedimentary Research, 2004, 74, 868-876.	1.6	156
84	Role of marble microstructure in near-infrared laser-induced damage during laser cleaning. Journal of Applied Physics, 2004, 95, 3350-3357.	2.5	27
85	Thaumasite as decay product of cement mortar in brick masonry of a church near Venice. Cement and Concrete Composites, 2003, 25, 1123-1129.	10.7	17
86	Application limits of Q-switched Nd:YAG laser irradiation for stone cleaning based on colour measurements. Journal of Cultural Heritage, 2003, 4, 50-55.	3.3	38
87	Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization. Applied and Environmental Microbiology, 2003, 69, 2182-2193.	3.1	442
88	A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Studies in Conservation, 2003, 48, 13-25.	1.1	62
89	Laser cleaning of stone materials: an overview of current research. Studies in Conservation, 2003, 48, 65-82.	1.1	10
90	TEM study of mullite growth after muscovite breakdown. American Mineralogist, 2003, 88, 713-724.	1.9	96

#	Article	IF	CITATIONS
91	Lime Mortars for the Conservation of Historic Buildings. Studies in Conservation, 2002, 47, 62-75.	1.1	78
92	Liesegang pattern development in carbonating traditional lime mortars. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 2261-2273.	2.1	62
93	Lime Mortars for the Conservation of Historic Buildings. Studies in Conservation, 2002, 47, 62.	1.1	75
94	Effects of ferrocyanide ions on NaCl crystallization in porous stone. Journal of Crystal Growth, 2002, 243, 503-516.	1.5	112
95	Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 2001, 13, 621-634.	1.3	469
96	Procesos de alteración asociados al contenido de minerales arcillosos en materiales pétreos. Materiales De Construccion, 2001, 51, 163-182.	0.7	21
97	How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cement and Concrete Research, 2000, 30, 1527-1534.	11.0	347
98	Behavior of Brick Samples in Aggressive Environments. Water, Air, and Soil Pollution, 2000, 119, 191-207.	2.4	43
99	Influencing Crystallization Damage in Porous Materials through the Use of Surfactants:Â Experimental Results Using Sodium Dodecyl Sulfate and Cetyldimethylbenzylammonium Chloride. Langmuir, 2000, 16, 947-954.	3.5	47
100	Aging of Lime Putty: Effects on Traditional Lime Mortar Carbonation. Journal of the American Ceramic Society, 2000, 83, 1070-1076.	3.8	141
101	Origins of honeycomb weathering: The role of salts and wind. Bulletin of the Geological Society of America, 1999, 111, 1250-1255.	3.3	81
102	Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and Landforms, 1999, 24, 191-209.	2.5	505
103	Evidence of honeycomb weathering on Mars. Geophysical Research Letters, 1998, 25, 3249-3252.	4.0	39
104	The Role of Sepiolite-Palygorskite in the Decay of Ancient Egyptian Limestone Sculptures. Clays and Clay Minerals, 1998, 46, 414-422.	1.3	36
105	Calcium Hydroxide Crystal Evolution upon Aging of Lime Putty. Journal of the American Ceramic Society, 1998, 81, 3032-3034.	3.8	130
106	The Role of Clays in the Decay of Ancient Egyptian Limestone Sculptures. Journal of the American Institute for Conservation, 1997, 36, 151-163.	0.5	27
107	Human impact in a tourist karstic cave (Aracena, Spain). Environmental Geology, 1997, 31, 142-149.	1.2	78
108	An urban model for dolomite precipitation: authigenic dolomite on weathered building stones. Sedimentary Geology, 1997, 109, 1-11.	2.1	35

#	Article	IF	CITATIONS
109	The Role of Clays in the Decay of Ancient Egyptian Limestone Sculptures. Journal of the American Institute for Conservation, 1997, 36, 151.	0.5	23
110	Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Science of the Total Environment, 1996, 187, 79-91.	8.0	181
111	Incipient Maya Burnt-Lime Technology: Characterization and Chronological Variations in Preclassic Plaster, Stucco and Mortar at Nakbe, Guatemala. Materials Research Society Symposia Proceedings, 1996, 462, 207.	0.1	8
112	Pollution-Derived Heavy-Metal Enrichment on Building Stones. Mineralogical Magazine, 1994, 58A, 781-782.	1.4	1
113	Carbonates. , 0, , 337-375.		5
114	Predicting salt damage in practice: A theoretical insight into laboratory tests RILEM Technical Letters, 0, 2, 108-118.	0.0	60
115	Influence of the calcination process in traditional gypsum with structural behavior. Ge-Conservacion, 0, 11, 79-85.	0.2	7