Peter Caravan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918158/publications.pdf

Version: 2024-02-01

203 papers

17,484 citations

25034 57 h-index 128 g-index

224 all docs

224
docs citations

times ranked

224

14553 citing authors

#	Article	IF	CITATIONS
1	Detection and Characterization of Thrombosis in Humans Using Fibrin-Targeted Positron Emission Tomography and Magnetic Resonance. JACC: Cardiovascular Imaging, 2022, 15, 504-515.	5.3	12
2	Enzyme Control Over Ferric Iron Magnetostructural Properties. Angewandte Chemie, 2022, 134, .	2.0	1
3	Enzyme Control Over Ferric Iron Magnetostructural Properties. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
4	Peroxidasin Deficiency Re-programs Macrophages Toward Pro-fibrolysis Function and Promotes Collagen Resolution in Liver. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1483-1509.	4.5	9
5	Lysyl oxidase regulation and protein aldehydes in the injured newborn lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L204-L223.	2.9	6
6	Imaging High-Risk Atherothrombosis Using a Novel Fibrin-Binding Positron Emission Tomography Probe. Stroke, 2022, 53, 595-604.	2.0	3
7	Reply to: Endobronchial Optical Coherence Tomography: Shining New Light on Diagnosing UIP?. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	2
8	Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. , 2022, 1, 28-44.		32
9	Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharmacy and Chemistry, 2022, 7, 9.	3.9	1
10	Fibrin-targeting molecular MRI in inflammatory CNS disorders. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3692-3704.	6.4	5
11	Prediction of Gd(III) complex thermodynamic stability. Coordination Chemistry Reviews, 2022, 467, 214606.	18.8	9
12	Abstract 2454: Imaging pancreatic ductal adenocarcinoma using a zinc-sensitive MRI contrast agent: A novel method to detect early-stage PDAC lesions. Cancer Research, 2022, 82, 2454-2454.	0.9	0
13	Abstract 255: Peroxidasin deficiency recruits pro-healing macrophages into the liver and inhibits NAFLD progression to HCC. Cancer Research, 2022, 82, 255-255.	0.9	O
14	In situ decellularization of a large animal saccular aneurysm model: sustained inflammation and active aneurysm wall remodeling. Journal of NeuroInterventional Surgery, 2021, 13, 267-271.	3.3	5
15	Quantitative, noninvasive MRI characterization of disease progression in a mouse model of non-alcoholic steatohepatitis. Scientific Reports, $2021, 11, 6105$.	3.3	4
16	Use of EP3533-Enhanced Magnetic Resonance Imaging as a Measure of Disease Progression in Skeletal Muscle of mdx Mice. Frontiers in Neurology, 2021, 12, 636719.	2.4	3
17	Abstract 1311: PET-MRI microdosing can determine the delivery of the experimental cancer therapeutic, MN-anti-miR10b, to metastatic lesions in a murine model of breast cancer., 2021,,.		0
18	Multimodal Bone Metastasis-associated Epidermal Growth Factor Receptor Imaging in an Orthotopic Rat Model. Radiology Imaging Cancer, 2021, 3, e200069.	1.6	1

#	Article	IF	CITATIONS
19	Radiolabeling and PET–MRI microdosing of the experimental cancer therapeutic, MN-anti-miR10b, demonstrates delivery to metastatic lesions in a murine model of metastatic breast cancer. Cancer Nanotechnology, 2021, 12, .	3.7	1
20	Diagnostic Accuracy of Endobronchial Optical Coherence Tomography for the Microscopic Diagnosis of Usual Interstitial Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1164-1179.	5.6	32
21	Dynamic contrast-enhanced magnetic resonance imaging of the lung reveals important pathobiology in idiopathic pulmonary fibrosis. ERJ Open Research, 2021, 7, 00907-2020.	2.6	8
22	Evaluation of the Diagnostic Performance of Positron Emission Tomography/Magnetic Resonance for the Diagnosis of Liver Metastases. Investigative Radiology, 2021, 56, 621-628.	6.2	15
23	Molecular MR Contrast Agents. Investigative Radiology, 2021, 56, 20-34.	6.2	25
24	Molecular Imaging of Fibrosis., 2021,, 1447-1468.		0
25	86Y PET imaging. Methods in Enzymology, 2021, 651, 313-342.	1.0	3
26	Positron Emission Tomography–Magnetic Resonance Imaging Pharmacokinetics, In Vivo Biodistribution, and Whole-Body Elimination of Mn-PyC3A. Investigative Radiology, 2021, 56, 261-270.	6.2	24
27	Molecular Magnetic Resonance Imaging of Liver Fibrosis and Fibrogenesis Is Not Altered by Inflammation. Investigative Radiology, 2021, 56, 244-251.	6.2	6
28	Improving the reactivity of hydrazine-bearing MRI probes for <i>in vivo</i> imaging of lung fibrogenesis. Chemical Science, 2020, 11, 224-231.	7.4	33
29	Yttriumâ€86 Is a Positron Emitting Surrogate of Gadolinium for Noninvasive Quantification of Wholeâ€Body Distribution of Gadoliniumâ€Based Contrast Agents. Angewandte Chemie - International Edition, 2020, 59, 1474-1478.	13.8	23
30	Molecular Magnetic Resonance Imaging of Fibrin Deposition in the Liver as an Indicator of Tissue Injury and Inflammation. Investigative Radiology, 2020, 55, 209-216.	6.2	15
31	Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor ⁶⁴ Cu-Macrin in Mice, Rabbits, and Pigs. Circulation: Cardiovascular Imaging, 2020, 13, e010586.	2.6	32
32	Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric Properties. Inorganic Chemistry, 2020, 59, 17712-17721.	4.0	16
33	Collagen-targeted molecular imaging in diffuse liver diseases. Abdominal Radiology, 2020, 45, 3545-3556.	2.1	7
34	Toward Molecular Imaging of Intestinal Pathology. Inflammatory Bowel Diseases, 2020, 26, 1470-1484.	1.9	11
35	Revisiting dithiadiaza macrocyclic chelators for copper-64 PET imaging. Dalton Transactions, 2020, 49, 14088-14098.	3.3	6
36	Particle Size of Xâ€ray Pumped UVCâ€Emitting Nanoparticles Defines Intracellular Localization and Biological Activity Against Cancer Cells. Particle and Particle Systems Characterization, 2020, 37, 2000201.	2.3	1

#	Article	IF	CITATIONS
37	Advanced MRI of Liver Fibrosis and Treatment Response in a Rat Model of Nonalcoholic Steatohepatitis. Radiology, 2020, 296, 67-75.	7.3	22
38	Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorganic Chemistry, 2020, 59, 6648-6678.	4.0	80
39	Free-breathing dynamic contrast-enhanced magnetic resonance of interstitial lung fibrosis. Magnetic Resonance Imaging, 2020, 69, 16-21.	1.8	9
40	Advances in functional and molecular MRI technologies in chronic liver diseases. Journal of Hepatology, 2020, 73, 1241-1254.	3.7	27
41	Fibrotic Response to Neoadjuvant Therapy Predicts Survival in Pancreatic Cancer and Is Measurable with Collagen-Targeted Molecular MRI. Clinical Cancer Research, 2020, 26, 5007-5018.	7.0	29
42	Yttriumâ€86 Is a Positron Emitting Surrogate of Gadolinium for Noninvasive Quantification of Wholeâ€Body Distribution of Gadoliniumâ€Based Contrast Agents. Angewandte Chemie, 2020, 132, 1490-1494.	2.0	1
43	<p>A Chelate-Free Nano-Platform for Incorporation of Diagnostic and Therapeutic Isotopes</p> . International Journal of Nanomedicine, 2020, Volume 15, 31-47.	6.7	9
44	Peroxidase Sensitive Amplifiable Probe for Molecular Magnetic Resonance Imaging of Pulmonary Inflammation. ACS Sensors, 2019, 4, 2412-2419.	7.8	17
45	THU-084-A comparative study of anti-Fibrotic therapeutics using aptamer-based quantitative proteomics in a rat model of non-alcoholic steatohepatitis cirrhosis. Journal of Hepatology, 2019, 70, e196-e197.	3.7	0
46	The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics, 2019, 11, 240-254.	2.4	100
47	Targeted MR Imaging in Cardiovascular Disease. Contemporary Cardiology, 2019, , 439-449.	0.1	0
48	Water exchange in lanthanide complexes for MRI applications. Lessons learned over the last 25 years. Dalton Transactions, 2019, 48, 11161-11180.	3.3	41
49	Type I Collagen–targeted Positron Emission Tomography Imaging in Idiopathic Pulmonary Fibrosis: First-in-Human Studies. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 258-261.	5.6	41
50	THU-093-The calpain inhibitor, BLD-2660, has robust anti-fibrotic activity in a rat model of non-alcoholic steatohepatitis. Journal of Hepatology, 2019, 70, e201-e202.	3.7	3
51	Novel Imaging Approaches in Systemic Sclerosis-Associated Interstitial Lung Disease. Current Rheumatology Reports, 2019, 21, 25.	4.7	13
52	⁶⁸ Ga-NODAGA-Indole: An Allysine-Reactive Positron Emission Tomography Probe for Molecular Imaging of Pulmonary Fibrogenesis. Journal of the American Chemical Society, 2019, 141, 5593-5596.	13.7	23
53	The farnesoid X receptor agonist EDPâ€305 reduces interstitial renal fibrosis in a mouse model of unilateral ureteral obstruction. FASEB Journal, 2019, 33, 7103-7112.	0.5	29
54	Molecular Magnetic Resonance Imaging Using a Redox-Active Iron Complex. Journal of the American Chemical Society, 2019, 141, 5916-5925.	13.7	96

#	Article	IF	Citations
55	DYNAMIC CONTRAST-ENHANCED MRI TO ASSESS THE MICROVASCULATURE IN IPF. Chest, 2019, 156, A2268.	0.8	1
56	Tumor Contrast Enhancement and Whole-Body Elimination of the Manganese-Based Magnetic Resonance Imaging Contrast Agent Mn-PyC3A. Investigative Radiology, 2019, 54, 697-703.	6.2	45
57	Noninvasive quantification of fibrosis in skeletal and cardiac muscle in mdx mice using EP3533 enhanced magnetic resonance imaging. Magnetic Resonance in Medicine, 2019, 81, 2728-2735.	3.0	12
58	Molecular Probes for Imaging Fibrosis and Fibrogenesis. Chemistry - A European Journal, 2019, 25, 1128-1141.	3.3	43
59	Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chemical Reviews, 2019, 119, 957-1057.	47.7	977
60	Molecular imaging of fibrosis: recent advances and future directions. Journal of Clinical Investigation, 2019, 129, 24-33.	8.2	86
61	Cardiovascular Magnetic Resonance Contrast Agents. , 2019, , 27-39.e4.		0
62	Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications. Nature Communications, 2018, 9, 857.	12.8	64
63	Gadofosveset-enhanced lung magnetic resonance imaging to detect ongoing vascular leak in pulmonary fibrosis. European Respiratory Journal, 2018, 51, 1800171.	6.7	27
64	Laser-assisted delivery of synergistic combination chemotherapy in in vivo skin. Journal of Controlled Release, 2018, 275, 242-253.	9.9	30
65	Gadolinium-Free Contrast Agents for Magnetic Resonance Imaging of the Central Nervous System. ACS Chemical Neuroscience, 2018, 9, 395-397.	3.5	28
66	Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes. EJNMMI Radiopharmacy and Chemistry, 2018, 3, 2.	3.9	6
67	Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a dietâ€induced mouse model of nonalcoholic steatohepatitis. Hepatology Communications, 2018, 2, 529-545.	4.3	43
68	A Manganese-based Alternative to Gadolinium: Contrast-enhanced MR Angiography, Excretion, Pharmacokinetics, and Metabolism. Radiology, 2018, 286, 865-872.	7.3	87
69	Manganese-Based Contrast Agents for Magnetic Resonance Imaging of Liver Tumors: Structure–Activity Relationships and Lead Candidate Evaluation. Journal of Medicinal Chemistry, 2018, 61, 8811-8824.	6.4	72
70	Collagen targeted MRI accurately measures the desmoplastic response to folfirinox treatment in a murine model of pancreatic cancer. Hpb, 2018, 20, S23-S24.	0.3	1
71	High-resolution Imaging of Myeloperoxidase Activity Sensors in Human Cerebrovascular Disease. Scientific Reports, 2018, 8, 7687.	3.3	23
72	Imaging the Vascular Bone Marrow Niche During Inflammatory Stress. Circulation Research, 2018, 123, 415-427.	4.5	45

#	Article	IF	CITATIONS
73	Molecular magnetic resonance imaging accurately measures the antifibrotic effect of EDPâ€305, a novel farnesoid X receptor agonist. Hepatology Communications, 2018, 2, 821-835.	4.3	46
74	Orthotopic and heterotopic murine models of pancreatic cancer and their different responses to FOLFIRINOX chemotherapy. DMM Disease Models and Mechanisms, $2018,11,$.	2.4	60
75	CM-101: Type I Collagen–targeted MR Imaging Probe for Detection of Liver Fibrosis. Radiology, 2018, 287, 581-589.	7.3	43
76	Intramolecular Hydrogen Bonding Restricts Gd–Aqua‣igand Dynamics. Angewandte Chemie - International Edition, 2017, 56, 5603-5606.	13.8	19
77	Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatric Radiology, 2017, 47, 507-521.	2.0	45
78	A Novel Farnesoid X Receptor (FXR) Agonist, EDP-305, Reduces Fibrosis Progression in Animal Models of Hepatobiliary Injury. Gastroenterology, 2017, 152, S1276.	1.3	0
79	Intramolecular Hydrogen Bonding Restricts Gd–Aquaâ€Ligand Dynamics. Angewandte Chemie, 2017, 129, 5695-5698.	2.0	2
80	Optimization of a Collagen-Targeted PET Probe for Molecular Imaging of Pulmonary Fibrosis. Journal of Nuclear Medicine, 2017, 58, 1991-1996.	5.0	50
81	Type I collagen–targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Science Translational Medicine, 2017, 9, .	12.4	128
82	Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1693-1701.	3.3	19
83	Peptide-based fibrin-targeting probes for thrombus imaging. Dalton Transactions, 2017, 46, 14488-14508.	3.3	37
84	High sensitivity HPLC method for determination of the allysine concentration in tissue by use of a naphthol derivative. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1064, 7-13.	2.3	14
85	Molecular MR imaging of fibrosis in a mouse model of pancreatic cancer. Scientific Reports, 2017, 7, 8114.	3.3	30
86	Molecular Magnetic Resonance Imaging of Lung Fibrogenesis with an Oxyamineâ€Based Probe. Angewandte Chemie, 2017, 129, 9957-9960.	2.0	7
87	Gut microbiota is critical for the induction of chemotherapy-induced pain. Nature Neuroscience, 2017, 20, 1213-1216.	14.8	194
88	Molecular Magnetic Resonance Imaging of Lung Fibrogenesis with an Oxyamineâ€Based Probe. Angewandte Chemie - International Edition, 2017, 56, 9825-9828.	13.8	41
89	Combined magnetic resonance elastography and collagen molecular magnetic resonance imaging accurately stage liver fibrosis in a rat model. Hepatology, 2017, 65, 1015-1025.	7.3	43
90	Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight, 2017, 2, .	5.0	67

#	Article	IF	CITATIONS
91	Molecular imaging of oxidized collagen quantifies pulmonary and hepatic fibrogenesis. JCI Insight, 2017, 2, .	5.0	57
92	Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemical characterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis. International Journal of Nanomedicine, 2016, Volume 11, 3737-3751.	6.7	31
93	Macrocycleâ€Based Hydroxamate Ligands for Complexation and Immunoconjugation of ⁸⁹ Zirconium for Positron Emission Tomography (PET) Imaging. ChemPlusChem, 2016, 81, 274-281.	2.8	55
94	Gd ₃ TCAS ₂ : An Aquated Gd ³⁺ -Thiacalix[4]arene Sandwich Cluster with Extremely Slow Ligand Substitution Kinetics. Inorganic Chemistry, 2016, 55, 4000-4005.	4.0	15
95	A Janus Chelator Enables Biochemically Responsive MRI Contrast with Exceptional Dynamic Range. Journal of the American Chemical Society, 2016, 138, 15861-15864.	13.7	59
96	Bioorthogonal Fluorophore Linked DFOâ€"Technology Enabling Facile Chelator Quantification and Multimodal Imaging of Antibodies. Bioconjugate Chemistry, 2016, 27, 257-263.	3.6	50
97	T2 relaxation time is related to liver fibrosis severity. Quantitative Imaging in Medicine and Surgery, 2016, 6, 103-114.	2.0	54
98	Probing the Structure–Relaxivity Relationship of Bis-hydrated Gd(DOTAla) Derivatives. Inorganic Chemistry, 2015, 54, 2403-2410.	4.0	15
99	MR imaging probes: design and applications. Dalton Transactions, 2015, 44, 4804-4818.	3.3	112
100	Radiation Dosimetry of the Fibrin-Binding Probe ⁶⁴ Cu-FBP8 and Its Feasibility for PET Imaging of Deep Vein Thrombosis and Pulmonary Embolism in Rats. Journal of Nuclear Medicine, 2015, 56, 1088-1093.	5.0	24
101	Multimodal Molecular Imaging Reveals High Target Uptake and Specificity of ¹¹¹ In- and ⁶⁸ Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats. Journal of Nuclear Medicine, 2015, 56, 1587-1592.	5.0	21
102	Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2114-2121.	2.4	42
103	3D molecular MR imaging of liver fibrosis and response to rapamycin therapy in a bile duct ligation rat model. Journal of Hepatology, 2015, 63, 689-696.	3.7	57
104	A Manganese Alternative to Gadolinium for MRI Contrast. Journal of the American Chemical Society, 2015, 137, 15548-15557.	13.7	262
105	Hexameric Mn ^{II} Dendrimer as MRI Contrast Agent. Chemistry - A European Journal, 2014, 20, 14507-14513.	3.3	58
106	Noninvasive Biomarkers of Liver Fibrosis: Clinical Applications and Future Directions. Current Pathobiology Reports, 2014, 2, 245-256.	3.4	30
107	Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology, 2014, 59, 1577-1590.	7. 3	290
108	Contrast agents for MRI: 30+ years and where are we going?. Journal of Biological Inorganic Chemistry, 2014, 19, 127-131.	2.6	141

#	Article	IF	CITATIONS
109	Structure–Redox–Relaxivity Relationships for Redox Responsive Manganese-Based Magnetic Resonance Imaging Probes. Inorganic Chemistry, 2014, 53, 10748-10761.	4.0	73
110	Gd(DOTAlaP): Exploring the Boundaries of Fast Water Exchange in Gadolinium-Based Magnetic Resonance Imaging Contrast Agents. Inorganic Chemistry, 2014, 53, 6985-6994.	4.0	23
111	Pycup—A Bifunctional, Cage-like Ligand for ⁶⁴ Cu Radiolabeling. Molecular Pharmaceutics, 2014, 11, 617-629.	4.6	40
112	Effect of Chelate Type and Radioisotope on the Imaging Efficacy of 4 Fibrin-Specific PET Probes. Journal of Nuclear Medicine, 2014, 55, 1157-1163.	5.0	25
113	In Vivo Molecular Imaging of Thrombosis and Thrombolysis Using a Fibrin-Binding Positron Emission Tomographic Probe. Circulation: Cardiovascular Imaging, 2014, 7, 697-705.	2.6	41
114	Whole brain mapping of water pools and molecular dynamics with rotating frame MR relaxation using gradient modulated low-power adiabatic pulses. NeuroImage, 2014, 89, 92-109.	4.2	24
115	Activation and Retention: A Magnetic Resonance Probe for the Detection of Acute Thrombosis. Angewandte Chemie - International Edition, 2014, 53, 1140-1143.	13.8	22
116	Peptide Optimization and Conjugation Strategies in the Development of Molecularly Targeted Magnetic Resonance Imaging Contrast Agents. Methods in Molecular Biology, 2014, 1088, 185-211.	0.9	18
117	Molecular Magnetic Resonance Imaging of Pulmonary Fibrosis in Mice. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 1120-1126.	2.9	89
118	Direct Measurement of the Mn(II) Hydration State in Metal Complexes and Metalloproteins through ¹⁷ O NMR Line Widths. Journal of the American Chemical Society, 2013, 135, 18600-18608.	13.7	92
119	Molecular MRI of collagen to diagnose and stage liver fibrosis. Journal of Hepatology, 2013, 59, 992-998.	3.7	128
120	[Gd(CyPic3A)(H2O)2]â^': a stable, bis(aquated) and high-relaxivity Gd(iii) complex. Chemical Communications, 2013, 49, 8060.	4.1	40
121	Molecular MRI of the Cardiovascular System in the Post-NSF Era. Current Cardiovascular Imaging Reports, 2013, 6, 61-68.	0.6	8
122	Is Macrocycle a Synonym for Kinetic Inertness in Gd(III) Complexes? Effect of Coordinating and Noncoordinating Substituents on Inertness and Relaxivity of Gd(III) Chelates with DO3A-like Ligands. Inorganic Chemistry, 2013, 52, 4084-4096.	4.0	44
123	Redox-Activated Manganese-Based MR Contrast Agent. Journal of the American Chemical Society, 2013, 135, 4620-4623.	13.7	156
124	Fibrin-Targeted PET Probes for the Detection of Thrombi. Molecular Pharmaceutics, 2013, 10, 1100-1110.	4.6	51
125	Structure–Relaxivity Relationships of Serum Albumin Targeted MRI Probes Based on a Single Amino Acid Gd Complex. Journal of Medicinal Chemistry, 2013, 56, 1782-1786.	6.4	31
126	Science to Practice: How Will Myocardial Inflammation Be Imaged with MR Imaging?. Radiology, 2012, 264, 309-311.	7.3	1

#	Article	IF	Citations
127	Molecular Imaging of Fibrin in a Breast Cancer Xenograft Mouse Model. Investigative Radiology, 2012, 47, 553-558.	6.2	29
128	Fibrin Specific Peptides Derived by Phage Display: Characterization of Peptides and Conjugates for Imaging. Bioconjugate Chemistry, 2012, 23, 548-556.	3.6	60
129	Discrete Bimodal Probes for Thrombus Imaging. Journal of the American Chemical Society, 2012, 134, 10799-10802.	13.7	33
130	Molecular MR imaging of liver fibrosis: A feasibility study using rat and mouse models. Journal of Hepatology, 2012, 57, 549-555.	3.7	97
131	Gd(DOTAla): A Single Amino Acid Gd-complex as a Modular Tool for High Relaxivity MR Contrast Agent Development. Journal of the American Chemical Society, 2012, 134, 19858-19868.	13.7	70
132	Structure-Relaxivity Relationships among Targeted MR Contrast Agents. European Journal of Inorganic Chemistry, 2012, 2012, 1916-1923.	2.0	41
133	Serum Albumin Targeted, pHâ€Dependent Magnetic Resonance Relaxation Agents. Chemistry - A European Journal, 2012, 18, 3675-3686.	3.3	32
134	<sup>1H chemical shift magnetic resonance imaging probes with high sensitivity for multiplex imaging. Contrast Media and Molecular Imaging, 2012, 7, 276-279.	0.8	7
135	Molecular MRI of Thrombosis. Current Cardiovascular Imaging Reports, 2011, 4, 77-84.	0.6	33
136	Heteroditopic Binding of Magnetic Resonance Contrast Agents for Increased Relaxivity. Angewandte Chemie - International Edition, 2011, 50, 2621-2624.	13.8	28
137	Bimodal Thrombus Imaging: Simultaneous PET/MR Imaging with a Fibrin-targeted Dual PET/MR Probe—Feasibility Study in Rat Model. Radiology, 2011, 258, 812-820.	7.3	86
138	Molecular MRI of Acute Necrosis With a Novel DNA-Binding Gadolinium Chelate. Circulation: Cardiovascular Imaging, 2011, 4, 729-737.	2.6	54
139	Strategies for the Preparation of Bifunctional Gadolinium(III) Chelators. Current Organic Synthesis, 2011, 8, 535-565.	1.3	51
140	Gadofosveset-Enhanced Magnetic Resonance Imaging of Human Carotid Atherosclerotic Plaques. Investigative Radiology, 2010, 45, 275-281.	6.2	47
141	High Relaxivity Magnetic Resonance Imaging Contrast Agents Part 1. Investigative Radiology, 2010, 45, 600-612.	6.2	79
142	High-Relaxivity Magnetic Resonance Imaging Contrast Agents Part 2. Investigative Radiology, 2010, 45, 613-624.	6.2	119
143	Bimodal MR–PET Agent for Quantitative pH Imaging. Angewandte Chemie - International Edition, 2010, 49, 2382-2384.	13.8	145
144	Evidence for weak protein binding of commercial extracellular gadolinium contrast agents. Magnetic Resonance in Medicine, 2010, 63, 609-616.	3.0	27

#	Article	IF	Citations
145	Cardiovascular Magnetic Resonance Contrast Agents. , 2010, , 76-90.		3
146	Molecular MRI of Intracranial Thrombus in a Rat Ischemic Stroke Model. Stroke, 2010, 41, 1271-1277.	2.0	52
147	Targeted probes for cardiovascular MRI. Future Medicinal Chemistry, 2010, 2, 451-470.	2.3	36
148	Effect of peptide-chelate architecture on the metabolic stability of peptide-based MRI contrast agents. New Journal of Chemistry, 2010, 34, 611.	2.8	21
149	Molecular Magnetic Resonance Imaging of Myocardial Perfusion With EP-3600, a Collagen-Specific Contrast Agent. Circulation, 2009, 119, 1768-1775.	1.6	58
150	Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium― and manganeseâ€based T ₁ contrast agents. Contrast Media and Molecular Imaging, 2009, 4, 89-100.	0.8	437
151	Primer on gadolinium chemistry. Journal of Magnetic Resonance Imaging, 2009, 30, 1240-1248.	3.4	335
152	Biodistribution of gadoliniumâ€based contrast agents, including gadolinium deposition. Journal of Magnetic Resonance Imaging, 2009, 30, 1259-1267.	3.4	444
153	Molecular MRI of atherosclerotic plaque with targeted contrast agents. Current Cardiovascular Imaging Reports, 2009, 2, 87-94.	0.6	10
154	Protein-Targeted Gadolinium-Based Magnetic Resonance Imaging (MRI) Contrast Agents: Design and Mechanism of Action. Accounts of Chemical Research, 2009, 42, 851-862.	15.6	346
155	Magnetic Resonance Labeling of Stem Cells. JACC: Cardiovascular Imaging, 2009, 2, 1123-1125.	5.3	4
156	A lysine walk to high relaxivity collagen-targeted MRI contrast agents. Chemical Communications, 2009, , 430-432.	4.1	31
157	High-Frequency EPR and ENDOR Characterization of MRI Contrast Agents. Biological Magnetic Resonance, 2009, , 581-621.	0.4	7
158	Thrombus Imaging With Fibrin-Specific Gadolinium-Based MR Contrast Agent EP-2104R. Investigative Radiology, 2009, 44, 697-704.	6.2	151
159	Monovalent and Bivalent Fibrinâ€specific MRI Contrast Agents for Detection of Thrombus. Angewandte Chemie - International Edition, 2008, 47, 4918-4921.	13.8	53
160	Synthesis and Relaxometric Studies of a Dendrimerâ∈Based pHâ∈Responsive MRI Contrast Agent. Chemistry - A European Journal, 2008, 14, 7250-7258.	3.3	104
161	EP-2104R: A Fibrin-Specific Gadolinium-Based MRI Contrast Agent for Detection of Thrombus. Journal of the American Chemical Society, 2008, 130, 6025-6039.	13.7	208
162	Postinfarction Myocardial Scarring in Mice: Molecular MR Imaging with Use of a Collagen-targeting Contrast Agent. Radiology, 2008, 247, 788-796.	7.3	155

#	Article	IF	Citations
163	A High Relaxivity Magnetic Resonance Imaging Contrast Agent Targeted to Serum Albumin. Australian Journal of Chemistry, 2008, 61, 682.	0.9	11
164	The Effect of the Amide Substituent on the Biodistribution and Tolerance of Lanthanide(III) DOTA-Tetraamide Derivatives. Investigative Radiology, 2008, 43, 861-870.	6.2	26
165	Albumin Binding, Relaxivity, and Water Exchange Kinetics of the Diastereoisomers of MS-325, a Gadolinium(III)-Based Magnetic Resonance Angiography Contrast Agent. Inorganic Chemistry, 2007, 46, 6632-6639.	4.0	143
166	Protein Binding to Lanthanide(III) Complexes Can Reduce the Water Exchange Rate at the Lanthanide. Inorganic Chemistry, 2007, 46, 3576-3584.	4.0	59
167	Structural, Kinetic, and Thermodynamic Characterization of the Interconverting Isomers of MS-325, a Gadolinium(III)-Based Magnetic Resonance Angiography Contrast Agent. Inorganic Chemistry, 2007, 46, 6621-6631.	4.0	30
168	Potentiometric and Relaxometric Properties of a Gadolinium-Based MRI Contrast Agent for Sensing Tissue pH. Inorganic Chemistry, 2007, 46, 5260-5270.	4.0	116
169	Collagenâ€Targeted MRI Contrast Agent for Molecular Imaging of Fibrosis. Angewandte Chemie - International Edition, 2007, 46, 8171-8173.	13.8	220
170	Species Dependence on Plasma Protein Binding and Relaxivity of the Gadolinium-Based MRI Contrast Agent MS-325. Investigative Radiology, 2006, 41, 229-243.	6.2	77
171	Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chemical Society Reviews, 2006, 35, 512.	38.1	1,292
172	Determination of the Hydration Number of Gadolinium(III) Complexes by High-Field Pulsed17O ENDOR Spectroscopy. ChemPhysChem, 2006, 7, 1590-1597.	2.1	28
173	Probing the Water Coordination of Protein-Targeted MRI Contrast Agents by Pulsed ENDOR Spectroscopy. ChemPhysChem, 2005, 6, 2570-2577.	2.1	42
174	Multilocus Binding Increases the Relaxivity of Protein-Bound MRI Contrast Agents. Angewandte Chemie - International Edition, 2005, 44, 6766-6769.	13.8	97
175	When are Two Waters Worse Than One? Doubling the Hydration Number of a Gd-DTPA Derivative Decreases Relaxivity. Chemistry - A European Journal, 2005, 11, 5866-5874.	3.3	33
176	High-field pulsed EPR and ENDOR of Gd3+ complexes in glassy solutions. Applied Magnetic Resonance, 2005, 28, 281-295.	1.2	76
177	On the philosophy of optimizing contrast agents. An analysis of 1H NMRD profiles and ESR lineshapes of the Gd(III)complex MS-325+HSA. Journal of Magnetic Resonance, 2004, 167, 147-160.	2.1	40
178	Synthesis and Evaluation of a High Relaxivity Manganese(II)-Based MRI Contrast Agent. Inorganic Chemistry, 2004, 43, 6313-6323.	4.0	136
179	W-Band17O Pulsed Electron Nuclear Double Resonance Study of Gadolinium Complexes with Water. Journal of Physical Chemistry A, 2004, 108, 7318-7323.	2.5	66
180	Pulsed ENDOR Study of Water Coordination to Gd3+Complexes in Orientationally Disordered Systems. Journal of Physical Chemistry A, 2004, 108, 1990-2001.	2.5	62

#	Article	IF	Citations
181	MR contrast agent basics. , 2004, , 17-38.		1
182	The Gadolinium(III)â^'Water Hydrogen Distance in MRI Contrast Agents. Inorganic Chemistry, 2003, 42, 3972-3974.	4.0	81
183	Gadolinium-binding helix–turn–helix peptides: DNA-dependent MRI contrast agents. Chemical Communications, 2003, , 2574-2575.	4.1	46
184	The Interaction of MS-325 with Human Serum Albumin and Its Effect on Proton Relaxation Rates. Journal of the American Chemical Society, 2002, 124, 3152-3162.	13.7	432
185	The Gd3+Complex of a Fatty Acid Analogue of DOTP Binds to Multiple Albumin Sites with Variable Water Relaxivities. Inorganic Chemistry, 2001, 40, 6580-6587.	4.0	78
186	Thermodynamic Stability and Kinetic Inertness of MS-325, a New Blood Pool Agent for Magnetic Resonance Imaging. Inorganic Chemistry, 2001, 40, 2170-2176.	4.0	73
187	Enzyme-Activated Gd3+ Magnetic Resonance Imaging Contrast Agents with a Prominent Receptor-Induced Magnetization Enhancement. Angewandte Chemie - International Edition, 2001, 40, 2903-2906.	13.8	135
188	Enzyme-Activated Gd(3+) Magnetic Resonance Imaging Contrast Agents with a Prominent Receptor-Induced Magnetization Enhancement We thank Dr. Shrikumar Nair for helpful discussions Angewandte Chemie - International Edition, 2001, 40, 2903-2906.	13.8	14
189	Molecular factors that determine Curie spin relaxation in dysprosium complexes. Magnetic Resonance in Medicine, 2001, 46, 917-922.	3.0	0
190	Nuclear and Electronic Relaxation of Eu2+(aq):Â An Extremely Labile Aqua Ion1. Journal of the American Chemical Society, 1999, 121, 10403-10409.	13.7	79
191	Gadolinium(III) Chelates as MRI Contrast Agents:  Structure, Dynamics, and Applications. Chemical Reviews, 1999, 99, 2293-2352.	47.7	4,098
192	Tightening the Hydrophobic Belt:Â Effects of Backbone and Donor Group Variation on Podand Ligand Complexes of the Lanthanides. Inorganic Chemistry, 1998, 37, 1637-1647.	4.0	45
193	Interpretation of Activation Volumes for Water Exchange Reactions Revisited:ÂAbInitioCalculations for Al3+, Ga3+, and In3+, and New Experimental Data. Journal of the American Chemical Society, 1998, 120, 6569-6577.	13.7	95
194	Cationic Lanthanide Complexes of N,Nâ€~-Bis(2-pyridylmethyl)ethylenediamine-N,Nâ€~-diacetic Acid (H2bped). Inorganic Chemistry, 1997, 36, 1316-1321.	4.0	35
195	Effect of Pyridyl Donors in the Chelation of Aluminum(III), Gallium(III), and Indium(III). Inorganic Chemistry, 1997, 36, 1306-1315.	4.0	36
196	Effect of Pyridyl Donors in the Chelation of Aluminum(III), Gallium(III), and Indium(III). Inorganic Chemistry, 1997, 36, 4912-4912.	4.0	1
197	An extreme water exchange rate: the europium(II) aqua ion. Chemical Communications, 1997, , 2147-2148.	4.1	28
198	Selectivity among, and aggregation of, lanthanide ions. Journal of Alloys and Compounds, 1997, 249, 49-51.	5.5	4

#	Article	IF	CITATIONS
199	Tripodal Aminophenolate Ligand Complexes of Aluminum(III), Gallium(III), and Indium(III) in Water. Inorganic Chemistry, 1997, 36, 236-248.	4.0	41
200	Glucose-lowering properties of vanadium compounds: Comparison of coordination complexes with maltol or kojic acid as ligands. Journal of Inorganic Biochemistry, 1997, 68, 109-116.	3. 5	95
201	Selectivity of Potentially Hexadentate Amine Phenols for Ga3+and In3+in Aqueous Solutionâ€,‡. Inorganic Chemistry, 1996, 35, 715-724.	4.0	45
202	The reactions of O(3P) with some carboxylic acids and esters. Canadian Journal of Chemistry, $1996, 74, 516-523$.	1.1	5
203	Potentiometric, Calorimetric, and Solution NMR Studies of a Tridentate Ligand Which has a Marked Preference for Formation of Bis(ligand) versus Mono(ligand) Lanthanide Complexes and Which Exhibits High Selectivity for Heavier Lanthanides. Journal of the American Chemical Society, 1995, 117, 11230-11238.	13.7	260