List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3918153/publications.pdf Version: 2024-02-01

IOSHUA N FADD

#	Article	IF	CITATIONS
1	Osteoporosis and bone loss. , 2022, , 335-361.		0
2	Cellular senescence and the skeleton: pathophysiology and therapeutic implications. Journal of Clinical Investigation, 2022, 132, .	8.2	30
3	Cellular senescence and other aging mechanisms in bone and muscle. , 2022, , 19-37.		0
4	Targeted clearance of <i>p21</i> ―but not <i>p16</i> â€positive senescent cells prevents radiationâ€induced osteoporosis and increased marrow adiposity. Aging Cell, 2022, 21, e13602.	6.7	40
5	Skeletal Aging. Mayo Clinic Proceedings, 2022, 97, 1194-1208.	3.0	29
6	Effects of diabetes on osteocytes. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 310-317.	2.3	8
7	Identification of a suitable endogenous control miRNA in bone aging and senescence. Gene, 2022, 835, 146642.	2.2	9
8	Senescent cells exacerbate chronic inflammation and contribute to periodontal disease progression in old mice. Journal of Periodontology, 2021, 92, 1483-1495.	3.4	29
9	Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nature Reviews Endocrinology, 2021, 17, 685-697.	9.6	68
10	The role of senolytics in osteoporosis and other skeletal pathologies. Mechanisms of Ageing and Development, 2021, 199, 111565.	4.6	19
11	Modulation of fracture healing by the transient accumulation of senescent cells. ELife, 2021, 10, .	6.0	37
12	Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nature Communications, 2020, 11, 87.	12.8	118
13	LPS-induced premature osteocyte senescence: Implications in inflammatory alveolar bone loss and periodontal disease pathogenesis. Bone, 2020, 132, 115220.	2.9	55
14	Osteocyte Cellular Senescence. Current Osteoporosis Reports, 2020, 18, 559-567.	3.6	20
15	Periodontal Disease and Senescent Cells: New Players for an Old Oral Health Problem?. International Journal of Molecular Sciences, 2020, 21, 7441.	4.1	23
16	Cellular senescence in age-related disorders. Translational Research, 2020, 226, 96-104.	5.0	35
17	Determinants of Bone Material Strength and Cortical Porosity in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3718-e3729.	3.6	45
18	The role of cellular senescence in ageing and endocrine disease. Nature Reviews Endocrinology, 2020, 16, 263-275.	9.6	276

#	Article	IF	CITATIONS
19	Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapyâ€Related Bone Loss. Journal of Bone and Mineral Research, 2020, 35, 1119-1131.	2.8	74
20	Very Infrequent Zoledronate Therapy – Somehow Still Promisingly Effective. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2289-e2290.	3.6	1
21	Development and Application of Mass Spectroscopy Assays for Nε-(1-Carboxymethyl)-L-Lysine and Pentosidine in Renal Failure and Diabetes. journal of applied laboratory medicine, The, 2020, 5, 558-568.	1.3	11
22	Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight, 2020, 5, .	5.0	60
23	SUN-LB68 Advanced Glycation Endproducts Are Associated With Worse Bone Material Strength in Older Adults With and Without Type 2 Diabetes. Journal of the Endocrine Society, 2020, 4, .	0.2	1
24	Bone Marrow Adiposity in Models of Radiation- and Aging-Related Bone Loss Is Dependent on Cellular Senescence. Journal of Bone and Mineral Research, 2020, 37, 997-1011.	2.8	11
25	Skeletal Effects of Inducible ERα Deletion in Osteocytes in Adult Mice. Journal of Bone and Mineral Research, 2020, 37, 1750-1760.	2.8	7
26	Cellular senescence in bone. Bone, 2019, 121, 121-133.	2.9	133
27	Independent Roles of Estrogen Deficiency and Cellular Senescence in the Pathogenesis of Osteoporosis: Evidence in Young Adult Mice and Older Humans. Journal of Bone and Mineral Research, 2019, 34, 1407-1418.	2.8	77
28	<i>miR-219a-5p</i> Regulates Rorl ² During Osteoblast Differentiation and in Age-related Bone Loss. Journal of Bone and Mineral Research, 2019, 34, 135-144.	2.8	35
29	Inhibiting Cellular Senescence: A New Therapeutic Paradigm for Age-Related Osteoporosis. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1282-1290.	3.6	93
30	The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. Journal of Bone and Mineral Research, 2018, 33, 1568-1584.	2.8	54
31	Osteoprotection Through the Deletion of the Transcription Factor RorÎ ² in Mice. Journal of Bone and Mineral Research, 2018, 33, 720-731.	2.8	21
32	Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 2018, 24, 1246-1256.	30.7	1,384
33	The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children. Calcified Tissue International, 2017, 100, 500-513.	3.1	64
34	Targeting cellular senescence prevents age-related bone loss in mice. Nature Medicine, 2017, 23, 1072-1079.	30.7	754
35	Fracture Incidence and Characteristics in Young Adults Aged 18 to 49 Years: A Population-Based Study. Journal of Bone and Mineral Research, 2017, 32, 2347-2354.	2.8	44
36	Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 2016, 31, 1920-1929.	2.8	352

#	Article	IF	CITATIONS
37	Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells. Journal of Bone and Mineral Research, 2016, 31, 116-128.	2.8	58
38	Predictors of teriparatide treatment failure in patients with low bone mass. Bone Reports, 2016, 4, 17-22.	0.4	7
39	Determinants of bone strength and quality in diabetes mellitus in humans. Bone, 2016, 82, 28-34.	2.9	145
40	Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skeletal Muscle, 2015, 5, 21.	4.2	93
41	Regarding "True Gold or Pyrite: A Review of Reference Point Indentation for Assessing Bone Mechanical Properties In Vivo― Journal of Bone and Mineral Research, 2015, 30, 2325-2326.	2.8	10
42	The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14, 644-658.	6.7	1,534
43	Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women. Bone, 2015, 76, 49-57.	2.9	34
44	Effects of Age and Estrogen on Skeletal Gene Expression in Humans as Assessed by RNA Sequencing. PLoS ONE, 2015, 10, e0138347.	2.5	62
45	Body Composition During Childhood and Adolescence: Relations to Bone Strength and Microstructure. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4641-4648.	3.6	45
46	Bone Strength and Structural Deficits in Children and Adolescents With a Distal Forearm Fracture Resulting From Mild Trauma. Journal of Bone and Mineral Research, 2014, 29, 590-599.	2.8	60
47	In Vivo Assessment of Bone Quality in Postmenopausal Women With Type 2 Diabetes. Journal of Bone and Mineral Research, 2014, 29, 787-795.	2.8	423
48	Diminished Bone Strength Is Observed in Adult Women and Men Who Sustained a Mild Trauma Distal Forearm Fracture During Childhood. Journal of Bone and Mineral Research, 2014, 29, 2193-2202.	2.8	21
49	Standardizing Evaluation of pQCT Image Quality in the Presence of Subject Movement: Qualitative Versus Quantitative Assessment. Calcified Tissue International, 2014, 94, 202-211.	3.1	71
50	Fracture Prediction and the Definition of Osteoporosis in Children and Adolescents: The ISCD 2013 Pediatric Official Positions. Journal of Clinical Densitometry, 2014, 17, 275-280.	1.2	227
51	Exercise, Hormones, and Skeletal Adaptations During Childhood and Adolescence. Pediatric Exercise Science, 2014, 26, 384-391.	1.0	22
52	Altered cortical microarchitecture in patients with monoclonal gammopathy of undetermined significance. Blood, 2014, 123, 647-649.	1.4	32
53	Longitudinal relationships between whole body and central adiposity on weight-bearing bone geometry, density, and bone strength: a pQCT study in young girls. Archives of Osteoporosis, 2013, 8, 156.	2.4	26
54	Applications of a New Handheld Reference Point Indentation Instrument Measuring Bone Material Strength. Journal of Medical Devices, Transactions of the ASME, 2013, 7, 410051-410056.	0.7	59

#	Article	IF	CITATIONS
55	Effects of Estrogen with Micronized Progesterone on Cortical and Trabecular Bone Mass and Microstructure in Recently Postmenopausal Women. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E249-E257.	3.6	38
56	Effects of Physical Activity and Muscle Quality on Bone Development in Girls. Medicine and Science in Sports and Exercise, 2013, 45, 2332-2340.	0.4	24
57	Relationship of Sympathetic Activity to Bone Microstructure, Turnover, and Plasma Osteopontin Levels in Women. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 4219-4227.	3.6	59
58	Lower trabecular volumetric BMD at metaphyseal regions of weight-bearing bones is associated with prior fracture in young girls. Journal of Bone and Mineral Research, 2011, 26, 380-387.	2.8	30
59	Skeletal muscle fat content is inversely associated with bone strength in young girls. Journal of Bone and Mineral Research, 2011, 26, 2217-2225.	2.8	64
60	Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone, 2010, 46, 977-984.	2.9	77