Alexander Steinle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. Science, 1999, 285, 727-729.	12.6	2,677
2	Recognition of Stress-Induced MHC Molecules by Intestinal Epithelial γδT Cells. Science, 1998, 279, 1737-1740.	12.6	1,093
3	NK cells and cancer immunosurveillance. Oncogene, 2008, 27, 5932-5943.	5.9	572
4	Cutting Edge: Down-Regulation of MICA on Human Tumors by Proteolytic Shedding. Journal of Immunology, 2002, 169, 4098-4102.	0.8	565
5	Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood, 2003, 102, 1389-1396.	1.4	483
6	Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics, 2001, 53, 279-287.	2.4	428
7	Complex structure of the activating immunoreceptor NKG2D and its MHC class l–like ligand MICA. Nature Immunology, 2001, 2, 443-451.	14.5	352
8	Natural Killer Cell–Mediated Lysis of Hepatoma Cells via Specific Induction of NKG2D Ligands by the Histone Deacetylase Inhibitor Sodium Valproate. Cancer Research, 2005, 65, 6321-6329.	0.9	349
9	Tumor-Associated MICA Is Shed by ADAM Proteases. Cancer Research, 2008, 68, 6368-6376.	0.9	322
10	Activation of $\hat{VI^39VI^2}$ T Cells by NKG2D. Journal of Immunology, 2005, 175, 2144-2151.	0.8	282
11	RNA Interference Targeting Transforming Growth Factor-Î ² Enhances NKG2D-Mediated Antiglioma Immune Response, Inhibits Glioma Cell Migration and Invasiveness, and Abrogates Tumorigenicity <i>In vivo</i> . Cancer Research, 2004, 64, 7596-7603.	0.9	275
12	Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends in Immunology, 2013, 34, 182-191.	6.8	262
13	Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature, 2019, 572, 254-259.	27.8	246
14	Prevalent expression of the immunostimulatory MHC class I chain–related molecule is counteracted by shedding in prostate cancer. Journal of Clinical Investigation, 2004, 114, 560-568.	8.2	241
15	Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. European Journal of Immunology, 2003, 33, 194-203.	2.9	220
16	Downregulation and/or Release of NKG2D Ligands as Immune Evasion Strategy of Human Neuroblastoma. Neoplasia, 2004, 6, 558-568.	5.3	216
17	Systemic NKG2D Down-Regulation Impairs NK and CD8 T Cell Responses In Vivo. Journal of Immunology, 2005, 175, 720-729.	0.8	211
18	Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nature Immunology, 2006, 7, 1334-1342.	14.5	211

#	Article	IF	CITATIONS
19	Proteolytic Release of Soluble UL16-Binding Protein 2 from Tumor Cells. Cancer Research, 2006, 66, 2520-2526.	0.9	211
20	Soluble MICA in malignant diseases. International Journal of Cancer, 2006, 118, 684-687.	5.1	207
21	TGF-Â and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain, 2006, 129, 2416-2425.	7.6	194
22	Comprehensive Analysis of NKG2D Ligand Expression and Release in Leukemia: Implications for NKG2D-Mediated NK Cell Responses. Journal of Immunology, 2012, 189, 1360-1371.	0.8	179
23	Tumor Suppressive MicroRNAs miR-34a/c Control Cancer Cell Expression of ULBP2, a Stress-Induced Ligand of the Natural Killer Cell Receptor NKG2D. Cancer Research, 2012, 72, 460-471.	0.9	172
24	Shedding of endogenous MHC class lâ€related chain molecules A and B from different human tumor entities: Heterogeneous involvement of the "a disintegrin and metalloproteases―10 and 17. International Journal of Cancer, 2013, 133, 1557-1566.	5.1	170
25	Differential Clinical Significance of Individual NKG2D Ligands in Melanoma: Soluble ULBP2 as an Indicator of Poor Prognosis Superior to S100B. Clinical Cancer Research, 2009, 15, 5208-5215.	7.0	168
26	Vδ1 T Lymphocytes from B-CLL Patients Recognize ULBP3 Expressed on Leukemic B Cells and Up-Regulated by Trans-Retinoic Acid. Cancer Research, 2004, 64, 9172-9179.	0.9	166
27	Prevalent expression of the immunostimulatory MHC class I chain–related molecule is counteracted by shedding in prostate cancer. Journal of Clinical Investigation, 2004, 114, 560-568.	8.2	158
28	MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Research, 2003, 63, 8996-9006.	0.9	158
29	Macrophage Migration Inhibitory Factor Contributes to the Immune Escape of Ovarian Cancer by Down-Regulating NKG2D. Journal of Immunology, 2008, 180, 7338-7348.	0.8	144
30	Novel APC-like properties of human NK cells directly regulate T cell activation. Journal of Clinical Investigation, 2004, 114, 1612-1623.	8.2	136
31	BCR/ABL Oncogene Directly Controls MHC Class I Chain-Related Molecule A Expression in Chronic Myelogenous Leukemia. Journal of Immunology, 2006, 176, 5108-5116.	0.8	126
32	Release of MICB Molecules by Tumor Cells: Mechanism and Soluble MICB in Sera of Cancer Patients. Human Immunology, 2006, 67, 188-195.	2.4	119
33	Soluble NKG2D ligands: prevalence, release, and functional impact. Frontiers in Bioscience - Landmark, 2008, Volume, 3448.	3.0	119
34	Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunology, Immunotherapy, 2006, 55, 1584-1589.	4.2	113
35	Interaction of Monocytes with NK Cells upon Toll-Like Receptor-Induced Expression of the NKG2D Ligand MICA. Journal of Immunology, 2008, 181, 6711-6719.	0.8	111
36	New prospects on the NKG2D/NKG2DL system for oncology. OncoImmunology, 2013, 2, e26097.	4.6	109

#	Article	IF	CITATIONS
37	Diversification, expression, and γÎ′T cell recognition of evolutionarily distant members of the MIC family of major histocompatibility complex class I-related molecules. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12510-12515.	7.1	106
38	Impairment of NKG2D-Mediated Tumor Immunity by TGF-Î ² . Frontiers in Immunology, 2019, 10, 2689.	4.8	92
39	Interferonâ€Î³ downâ€regulates NKG2D ligand expression and impairs the NKG2Dâ€mediated cytolysis of MHC class Iâ€deficient melanoma by natural killer cells. International Journal of Cancer, 2009, 124, 1594-1604.	5.1	85
40	Expression of tollâ€like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates ILâ€8 release, and upâ€regulation of NKG2Dâ€ligands. FASEB Journal, 2006, 20, 118-120.	0.5	81
41	Modulation of NK Cell Function by Genetically Coupled C-Type Lectin-Like Receptor/Ligand Pairs Encoded in the Human Natural Killer Gene Complex. Frontiers in Immunology, 2013, 4, 362.	4.8	79
42	MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget, 2014, 5, 7651-7662.	1.8	79
43	Direct and Natural Killer Cell-Mediated Antitumor Effects of Low-Dose Bortezomib in Hepatocellular Carcinoma. Clinical Cancer Research, 2008, 14, 3520-3528.	7.0	78
44	The BCR/ABLâ€inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. International Journal of Cancer, 2010, 127, 2119-2128.	5.1	75
45	Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids. BMC Cancer, 2015, 15, 351.	2.6	74
46	NKG2D-Dependent Antitumor Effects of Chemotherapy and Radiotherapy against Glioblastoma. Clinical Cancer Research, 2018, 24, 882-895.	7.0	73
47	Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. OncoImmunology, 2018, 7, e1364827.	4.6	72
48	Induction of MHC class I-related chain B (MICB) by 5-aza-2′-deoxycytidine. Biochemical and Biophysical Research Communications, 2008, 370, 578-583.	2.1	58
49	Structure of the HCMV UL16-MICB Complex Elucidates Select Binding of a Viral Immunoevasin to Diverse NKG2D Ligands. PLoS Pathogens, 2010, 6, e1000723.	4.7	52
50	Interaction of C-type lectin-like receptors NKp65 and KACL facilitates dedicated immune recognition of human keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5100-5105.	7.1	50
51	A disintegrin and metalloproteinases 10 and 17 modulate the immunogenicity of glioblastoma-initiating cells. Neuro-Oncology, 2014, 16, 382-391.	1.2	49
52	NKp80 defines and stimulates a reactive subset of CD8 T cells. Blood, 2009, 113, 358-369.	1.4	45
53	Expression of HLA-C molecules confers target cell resistance to some non-major histocompatibility complex-restricted T cells in a manner analogous to allospecific natural killer cells Journal of Experimental Medicine, 1995, 182, 1005-1018.	8.5	43
54	Natural Killer Cell-Mediated Rejection of Experimental Human Lung Cancer by Genetic Overexpression of Major Histocompatibility Complex Class I Chain-Related Gene A. Human Gene Therapy, 2006, 17, 135-146.	2.7	42

#	Article	IF	CITATIONS
55	Cutting Edge: NKp80 Uses an Atypical Hemi-ITAM To Trigger NK Cytotoxicity. Journal of Immunology, 2011, 186, 657-661.	0.8	42
56	Vis-Ã-Vis in the NKC: Genetically Linked Natural Killer Cell Receptor/Ligand Pairs in the Natural Killer Gene Complex (NKC). Journal of Innate Immunity, 2011, 3, 227-235.	3.8	41
57	Altered MicroRNA Expression after Infection with Human Cytomegalovirus Leads to TIMP3 Downregulation and Increased Shedding of Metalloprotease Substrates, Including MICA. Journal of Immunology, 2014, 193, 1344-1352.	0.8	41
58	In vivo expansion of HLA-B35 alloreactive T cells sharing homologous T cell receptors: evidence for maintenance of an oligoclonally dominated allospecificity by persistent stimulation with an autologous MHC/peptide complex Journal of Experimental Medicine, 1995, 181, 503-513.	8.5	40
59	CD56 as a marker of an ILC1-like population with NK cell properties that is functionally impaired in AML. Blood Advances, 2019, 3, 3674-3687.	5.2	40
60	Natural Killer Group 2D Ligand Depletion Reconstitutes Natural Killer Cell Immunosurveillance of Head and Neck Squamous Cell Carcinoma. Frontiers in Immunology, 2017, 8, 387.	4.8	38
61	HLA class I alleles of LCL 721 and 174XCEM.T2 (T2). Tissue Antigens, 1994, 44, 268-270.	1.0	36
62	Genetically coupled receptor–ligand pair NKp80-AICL enables autonomous control of human NK cell responses. Blood, 2013, 122, 2380-2389.	1.4	35
63	The NKG2D axis: an emerging target in cancer immunotherapy. Expert Opinion on Therapeutic Targets, 2019, 23, 281-294.	3.4	34
64	Fc-Optimized NKG2D–Fc Constructs Induce NK Cell Antibody-Dependent Cellular Cytotoxicity against Breast Cancer Cells Independently of HER2/neu Expression Status. Journal of Immunology, 2014, 193, 4261-4272.	0.8	33
65	An Fcâ€optimized NKG2Dâ€immunoglobulin G fusion protein for induction of natural killer cell reactivity against leukemia. International Journal of Cancer, 2015, 136, 1073-1084.	5.1	32
66	Motif of HLA-B*3503 peptide ligands. Immunogenetics, 1995, 43, 105-107.	2.4	31
67	Human Cytomegalovirus-Encoded UL16 Discriminates MIC Molecules by Their α2 Domains. Journal of Immunology, 2006, 177, 3143-3149.	0.8	31
68	CLEC2A: a novel, alternatively spliced and skin-associated member of the NKC-encoded AICL–CD69–LLT1 family. Immunogenetics, 2007, 59, 903-912.	2.4	30
69	Soluble NKG2D ligands in hepatic autoimmune diseases and in benign diseases involved in marker metabolism. Anticancer Research, 2007, 27, 2041-5.	1.1	29
70	Microheterogeneity in HLA-B35 alleles influences peptide-dependent allorecognition by cytotoxic T cells but not binding of a peptide-restricted monoclonal antibody. Human Immunology, 1993, 38, 261-269.	2.4	28
71	Isolation and characterization of a genomic HLAâ€Cw6 clone. Tissue Antigens, 1992, 39, 134-137	1.0	23
72	The Innate Immune Response in the Central Nervous System and Its Role in Glioma Immune Surveillance. Oncology Research and Treatment, 2004, 27, 487-491.	1.2	22

#	Article	IF	CITATIONS
73	HemITAM: A single tyrosine motif that packs a punch. Science Signaling, 2017, 10, .	3.6	22
74	Conserved Amino Acids within the Adenovirus 2 E3/19K Protein Differentially Affect Downregulation of MHC Class I and MICA/B Proteins. Journal of Immunology, 2010, 184, 255-267.	0.8	21
75	The novel deubiquitinase inhibitor b-AP15 induces direct and NK cell-mediated antitumor effects in human mantle cell lymphoma. Cancer Immunology, Immunotherapy, 2018, 67, 935-947.	4.2	21
76	Chronic NKG2D Engagement In Vivo Differentially Impacts NK Cell Responsiveness by Activating NK Receptors. Frontiers in Immunology, 2017, 8, 1466.	4.8	20
77	Inhibition of hepatitis B virus replication by small interference RNA induces expression of MICA in HepG2.2.15 cells. Medical Microbiology and Immunology, 2009, 198, 27-32.	4.8	19
78	Cutting an NKG2D Ligand Short: Cellular Processing of the Peculiar Human NKG2D Ligand ULBP4. Frontiers in Immunology, 2018, 9, 620.	4.8	19
79	Impaired tumor rejection by memory CD8 T cells in mice with NKG2D dysfunction. International Journal of Cancer, 2012, 131, 1601-1610.	5.1	18
80	The Smac Mimetic BV6 Improves NK Cell-Mediated Killing of Rhabdomyosarcoma Cells by Simultaneously Targeting Tumor and Effector Cells. Frontiers in Immunology, 2017, 8, 202.	4.8	18
81	Dedicated immunosensing of the mouse intestinal epithelium facilitated by a pair of genetically coupled lectin-like receptors. Mucosal Immunology, 2015, 8, 232-242.	6.0	16
82	Differential NKG2D binding to highly related human NKG2D ligands ULBP2 and RAET1G is determined by a single amino acid in the l±2 domain. European Journal of Immunology, 2009, 39, 1642-1651.	2.9	14
83	CD155 is involved in NK-cell mediated lysis of human hepatoblastoma in vitro. Frontiers in Bioscience - Elite, 2011, E3, 1456-1466.	1.8	12
84	The Polymorphic HCMV Glycoprotein UL20 Is Targeted for Lysosomal Degradation by Multiple Cytoplasmic Dileucine Motifs. Traffic, 2011, 12, 1444-1456.	2.7	12
85	Clr-a: A Novel Immune-Related C-Type Lectin-like Molecule Exclusively Expressed by Mouse Gut Epithelium. Journal of Immunology, 2017, 198, 916-926.	0.8	12
86	Attenuated Natural Killer (NK) Cell Activation through C-type Lectin-like Receptor NKp80 Is Due to an Anomalous Hemi-immunoreceptor Tyrosine-based Activation Motif (HemITAM) with Impaired Syk Kinase Recruitment Capacity. Journal of Biological Chemistry, 2013, 288, 17725-17733.	3.4	11
87	Arming cytotoxic lymphocytes for cancer immunotherapy by means of the NKG2D/NKG2D-ligand system. Expert Opinion on Biological Therapy, 2020, 20, 1491-1501.	3.1	10
88	Increased Concentrations of Circulating Soluble MHC Class I-Related Chain A (sMICA) and sMICB and Modulation of Plasma Membrane MICA Expression: Potential Mechanisms and Correlation With Natural Killer Cell Activity in Systemic Lupus Erythematosus. Frontiers in Immunology, 2021, 12, 633658.	4.8	10
89	Key residues at the membraneâ€distal surface of <scp>KACL</scp> , but not glycosylation, determine the functional interaction of the keratinocyteâ€specific <scp>C</scp> â€type lectinâ€like receptor <scp>KACL</scp> with its highâ€affinity receptor <scp>NK</scp> p65. Immunology, 2015, 145, 114-123.	4.4	9
90	The Stalk Domain of NKp30 Contributes to Ligand Binding and Signaling of a Preassembled NKp30-CD3ζ Complex. Journal of Biological Chemistry, 2016, 291, 25427-25438.	3.4	9

#	Article	IF	CITATIONS
91	A point mutation in the <i>Ncr1</i> signal peptide impairs the development of innate lymphoid cell subsets. Oncolmmunology, 2018, 7, e1475875.	4.6	9
92	MICAgen Mice Recapitulate the Highly Restricted but Activation-Inducible Expression of the Paradigmatic Human NKG2D Ligand MICA. Frontiers in Immunology, 2020, 11, 960.	4.8	9
93	The HLA Likes and Dislikes of Allospecific and Non-MHC-Restricted Cytotoxic T Lymphocytes. Immunological Reviews, 1996, 154, 105-135.	6.0	7
94	BACL Is a Novel Brain-Associated, Non-NKC-Encoded Mammalian C-Type Lectin-Like Receptor of the CLEC2 Family. PLoS ONE, 2013, 8, e65345.	2.5	7
95	The Activating C-type Lectin-like Receptor NKp65 Signals through a Hemi-immunoreceptor Tyrosine-based Activation Motif (hemITAM) and Spleen Tyrosine Kinase (Syk). Journal of Biological Chemistry, 2017, 292, 3213-3223.	3.4	7
96	MULT1plying cancer immunity. Science, 2015, 348, 45-46.	12.6	6
97	Cellular Mechanisms Controlling Surfacing of AICL Glycoproteins, Cognate Ligands of the Activating NK Receptor NKp80. Journal of Immunology, 2018, 201, 1275-1286.	0.8	6
98	Select Clr-g Expression on Activated Dendritic Cells Facilitates Cognate Interaction with a Minor Subset of Splenic NK Cells Expressing the Inhibitory Nkrp1g Receptor. Journal of Immunology, 2018, 200, 983-996.	0.8	5
99	Transferrinâ€~ activation: Bonding with transferrin receptors tunes <scp>KLRG</scp> 1 function. European Journal of Immunology, 2014, 44, 1600-1603.	2.9	3
100	Editorial: ADAM10 in Cancer Immunology and Autoimmunity: More Than a Simple Biochemical Scissor. Frontiers in Immunology, 2020, 11, 1483.	4.8	3
101	Platelets Impair NK Cell Immunosurveillance Of Metastasizing Tumor Cells By Altering Surface Expression and Shedding Of Ligands For The Activating Immunoreceptor NKG2D. Blood, 2013, 122, 3488-3488.	1.4	3
102	Absence of NKG2D Ligands Defines Human Acute Myeloid Leukaemia Stem Cells and Mediates Their Immune Evasion. Blood, 2018, 132, 769-769.	1.4	2
103	NKG2D and Its Ligands In Leukemia: Comprehensive Analysis of Expression, Release and Modulation of NK Cell Reactivity Blood, 2010, 116, 1686-1686.	1.4	2
104	Reinforcing natural killers. Blood, 2009, 113, 6042-6043.	1.4	1
105	Editorial overview. Cellular and Molecular Life Sciences, 2011, 68, 3453-3455.	5.4	1
106	Human hematopoietic CD34+ progenitor cells induce natural killer cell alloresponses via NKG2D activation. Experimental Hematology, 2016, 44, 14-23.e1.	0.4	1
107	Targeting MICA/B with cytotoxic therapeutic antibodies leads to tumor control. Open Research Europe, 0, 1, 107.	2.0	1
108	Novel APC-like properties of human NK cells directly regulate T cell activation. Journal of Clinical Investigation, 2015, 125, 1763-1763.	8.2	1

#	Article	IF	CITATIONS
109	Targeting MICA/B with cytotoxic therapeutic antibodies leads to tumor control. Open Research Europe, 0, 1, 107.	2.0	1
110	Clr-f expression regulates kidney immune and metabolic homeostasis. Scientific Reports, 2022, 12, 4834.	3.3	1
111	The NKG2D ligand ULBP4 is not expressed by human monocytes. PLoS ONE, 2021, 16, e0246726.	2.5	0
112	Natural Killer Cell-Mediated Rejection of Experimental Human Lung Cancer by Genetic Overexpression of Major Histocompatibility Complex Class I Chain-Related Gene A. Human Gene Therapy, 2006, .	2.7	0
113	MIC Molecules. , 2011, , 2282-2285.		0
114	Induction of NK Cell Reactivity in Breast Cancer by Fc-Engineered NKG2D-Ig Fusion Proteins. Blood, 2012, 120, 253-253.	1.4	0
115	MIC Molecules. , 2015, , 2812-2816.		Ο