Fuhong He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3916819/publications.pdf

Version: 2024-02-01

567281 713466 1,103 27 15 21 h-index citations g-index papers 27 27 27 2472 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Analyses of Long Noncoding RNA and mRNA Profiles in Subjects with the Phlegm-Dampness Constitution. BioMed Research International, 2021, 2021, 1-14.	1.9	4
2	Identification of Chemo-Resistant Residual Cell Population in Pediatric AML of Complete Remission By Single Cell RNA Sequencing. Blood, 2020, 136, 25-26.	1.4	0
3	Benzene metabolite hydroquinone promotes DNA homologous recombination repair via the NF-κB pathway. Carcinogenesis, 2019, 40, 1021-1030.	2.8	12
4	Ecological principle meets cancer treatment: treating children with acute myeloid leukemia with low-dose chemotherapy. National Science Review, 2019, 6, 469-479.	9.5	9
5	PDGFRB mutation and tyrosine kinase inhibitor resistance in Ph-like acute lymphoblastic leukemia. Blood, 2018, 131, 2256-2261.	1.4	49
6	SETD2-mediated crosstalk between H3K36me3 and H3K79me2 in MLL-rearranged leukemia. Leukemia, 2018, 32, 890-899.	7.2	29
7	Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy. Journal of Clinical Investigation, 2018, 128, 5383-5398.	8.2	25
8	Cooperative Epigenetic Regulation By ASXL1 and NF1 Loss on Leukemogenesis. Blood, 2018, 132, 652-652.	1.4	0
9	Loss of Asxl2 leads to myeloid malignancies in mice. Nature Communications, 2017, 8, 15456.	12.8	23
10	Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cells, Leading to Bohring-Opitz-like Syndrome in Mice. Stem Cell Reports, 2016, 6, 914-925.	4.8	18
11	Downregulation of SETD2-H3K36me3 Tumor Suppression Axis Promotes MLL Leukemia through Activation of DOT1L-H3K79me2 Axis. Blood, 2016, 128, 435-435.	1.4	O
12	Clinical Outcome and Non-Synonymous Mutation Clearance in Chinese Children with Acute Myeloid Leukemia Treated with a Low-Intensity Induction Chemotherapy Regimen. Blood, 2016, 128, 2848-2848.	1.4	0
13	Regulation of MEIS1 by distal enhancer elements in acute leukemia. Leukemia, 2014, 28, 138-146.	7.2	17
14	Reprogramming of MLL-AF9 leukemia cells into pluripotent stem cells. Leukemia, 2014, 28, 1071-1080.	7.2	40
15	Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nature Genetics, 2014, 46, 287-293.	21.4	213
16	Rictor/mammalian target of rapamycin 2 regulates the development of notch1 induced murine T-cell acute lymphoblastic leukemia via forkhead box O3. Experimental Hematology, 2014, 42, 1031-1040.e4.	0.4	14
17	Downregulation of RUNX1/CBF \hat{l}^2 by MLL fusion proteins enhances hematopoietic stem cell self-renewal. Blood, 2014, 123, 1729-1738.	1.4	29
18	PU.1 is essential for MLL leukemia partially via crosstalk with the MEIS/HOX pathway. Leukemia, 2014, 28, 1436-1448.	7.2	45

Fuhong He

#	Article	IF	Citations
19	PU.1 Is Essential For MLL Leukemia Via Activation Of The Meis/HOX Pathway and A Monocytic Cytokine Mediated Anti-Apoptotic Inflammatory Program. Blood, 2013, 122, 1276-1276.	1.4	0
20	Gene and Genome Parameters of Mammalian Liver Circadian Genes (LCGs). PLoS ONE, 2012, 7, e46961.	2.5	10
21	Whole-Genome Sequencing of a Monozygotic Twin Pair Reveals Functional Cooperative Mutations of SETD2 in Acute Leukemia. Blood, 2012, 120, 781-781.	1.4	0
22	MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood, 2011, 117, 6895-6905.	1.4	103
23	A Novel Role for Minimal Introns: Routing mRNAs to the Cytosol. PLoS ONE, 2010, 5, e10144.	2.5	27
24	How Do Variable Substitution Rates Influence Ka and Ks Calculations?. Genomics, Proteomics and Bioinformatics, 2009, 7, 116-127.	6.9	42
25	How many human genes can be defined as housekeeping with current expression data?. BMC Genomics, 2008, 9, 172.	2.8	125
26	On the nature of human housekeeping genes. Trends in Genetics, 2008, 24, 481-484.	6.7	249
27	Modeling Transcriptome Based on Transcript-Sampling Data. PLoS ONE, 2008, 3, e1659.	2.5	20