
Christophe Plomion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3916573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The CenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe. Scientific Data, 2020, 7, 1.	5.3	830
2	Wood Formation in Trees. Plant Physiology, 2001, 127, 1513-1523.	4.8	650
3	Oak genome reveals facets of long lifespan. Nature Plants, 2018, 4, 440-452.	9.3	303
4	Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theoretical and Applied Genetics, 1999, 98, 18-31.	3.6	226
5	Proteomics for genetic and physiological studies in plants. Electrophoresis, 1999, 20, 2013-2026.	2.4	203
6	Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theoretical and Applied Genetics, 2002, 105, 145-159.	3.6	199
7	"Contrasting Patterns of Selection at Pinus pinaster Ait. Drought Stress Candidate Genes as Revealed by Genetic Differentiation Analyses". Molecular Biology and Evolution, 2008, 25, 417-437.	8.9	198
8	Wood formation in trees. Plant Physiology, 2001, 127, 1513-23.	4.8	192
9	Genomic landscape of the global oak phylogeny. New Phytologist, 2020, 226, 1198-1212.	7.3	186
10	Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a <scp>M</scp> editerranean pine. New Phytologist, 2014, 201, 874-886.	7.3	170
11	Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics, 2006, 6, 6509-6527.	2.2	155
12	Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theoretical and Applied Genetics, 2004, 109, 1204-1214.	3.6	153
13	A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics, 2010, 11, 570.	2.8	144
14	LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics, 2014, 30, 1623-1624.	4.1	140
15	Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Molecular Ecology, 2007, 16, 2137-2153.	3.9	129
16	Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range. PLoS ONE, 2011, 6, e23476.	2.5	129
17	Genomics of growth traits in forest trees. Current Opinion in Plant Biology, 2009, 12, 148-156.	7.1	126
18	A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theoretical and Applied Genetics, 1998, 97, 1090-1103.	3.6	125

#	Article	IF	CITATIONS
19	Genetic parameters and QTL analysis of $\hat{I}'13C$ and ring width in maritime pine. Plant, Cell and Environment, 2002, 25, 945-953.	5.7	119
20	Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity, 2001, 86, 469-479.	2.6	117
21	Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytologist, 2020, 226, 1171-1182.	7.3	117
22	Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytologist, 2006, 170, 723-738.	7.3	116
23	<i>De novo</i> assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnology Journal, 2014, 12, 286-299.	8.3	115
24	Extensive recent secondary contacts between four European white oak species. New Phytologist, 2017, 214, 865-878.	7.3	113
25	Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends in Plant Science, 2010, 15, 479-487.	8.8	111
26	A micromethod for high throughput RNA extraction in forest trees. Biological Research, 2007, 40, .	3.4	110
27	Genomics of Fagaceae. Tree Genetics and Genomes, 2012, 8, 583-610.	1.6	109
28	Water-deficit-responsive proteins in maritime pine. Plant Molecular Biology, 1998, 38, 587-596.	3.9	108
29	Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 2011, 72, 1219-1242.	2.9	108
30	Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Molecular Ecology Resources, 2016, 16, 254-265.	4.8	108
31	Quantitative trait dissection analysis in Eucalyptus using RAPD markers: 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages. Theoretical and Applied Genetics, 1997, 95, 597-608.	3.6	105
32	Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theoretical and Applied Genetics, 2004, 108, 558-566.	3.6	105
33	Genomic mapping in Pinus pinaster (maritime pine) using RAPD and protein markers. Heredity, 1995, 74, 661-668.	2.6	101
34	Compression Wood-Responsive Proteins in Developing Xylem of Maritime Pine (Pinus pinaster Ait.)1,2. Plant Physiology, 2000, 123, 959-970.	4.8	101
35	Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theoretical and Applied Genetics, 1995, 90, 1028-1034.	3.6	100
36	The proteome of maritime pine wood forming tissue. Proteomics, 2005, 5, 3731-3751.	2.2	99

#	Article	IF	CITATIONS
37	Genomic selection in maritime pine. Plant Science, 2016, 242, 108-119.	3.6	99
38	Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theoretical and Applied Genetics, 2004, 109, 1648-1659.	3.6	93
39	Towards decoding the conifer giga-genome. Plant Molecular Biology, 2012, 80, 555-569.	3.9	91
40	Forest tree genomics: 10 achievements from the past 10Âyears and future prospects. Annals of Forest Science, 2016, 73, 77-103.	2.0	91
41	Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Molecular Biology, 2003, 51, 249-262.	3.9	90
42	Highâ€resolution genetic maps of <i><scp>E</scp>ucalyptus</i> improve <i>EucalyptusÂgrandis</i> genome assembly. New Phytologist, 2015, 206, 1283-1296.	7.3	90
43	Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theoretical and Applied Genetics, 1996, 93-93, 849-858.	3.6	88
44	Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Molecular Ecology, 2017, 26, 706-717.	3.9	85
45	Proteomic analysis of differentially expressed proteins in hepatocellular carcinoma developed in patients with chronic viral hepatitisâ€C. Proteomics, 2005, 5, 3778-3789.	2.2	83
46	Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC Genomics, 2010, 11, 650.	2.8	82
47	Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing. BMC Genomics, 2013, 14, 236.	2.8	82
48	Performance of genomic prediction within and across generations in maritime pine. BMC Genomics, 2016, 17, 604.	2.8	82
49	Genetic mapping in Eucalyptus urophylla and Eucalyptus grandis using RAPD markers. Genome, 1996, 39, 1051-1061.	2.0	81
50	Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity, 2004, 92, 20-30.	2.6	79
51	Comparative genome and QTL mapping between maritime and loblolly pines. Molecular Breeding, 2003, 12, 185-195.	2.1	78
52	Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (<i>Pinus pinaster</i> Aiton,) Tj ETQq0 0 0 rgB1	Qverlock	e 10 ₇₈ Tf 50 14:

53	Highâ€Throughput <scp>DNA</scp> sequencing of ancient wood. Molecular Ecology, 2018, 27, 1138-1154.	3.9	73
54	Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Annals of Forest Science, 2002, 59, 563-575.	2.0	71

#	Article	IF	CITATIONS
55	Identification of QTLs affecting adaptive traits in Castanea sativa Mill. Plant, Cell and Environment, 2004, 27, 1088-1101.	5.7	71
56	Nucleotide variation in genes involved in wood formation in two pine species. New Phytologist, 2005, 167, 101-112.	7.3	71
57	A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theoretical and Applied Genetics, 2000, 100, 39-48.	3.6	67
58	Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics, 2011, 12, 368.	2.8	66
59	Automated SNP Detection in Expressed Sequence Tags: Statistical Considerations and Application to Maritime Pine Sequences. Plant Molecular Biology, 2004, 54, 461-470.	3.9	65
60	High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biology, 2013, 11, 50.	3.8	63
61	The genetics of water-use efficiency and its relation to growth in maritime pine. Journal of Experimental Botany, 2014, 65, 4757-4768.	4.8	62
62	A high density genetic map of maritime pine based on AFLPs. Annals of Forest Science, 2002, 59, 627-636.	2.0	61
63	Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Molecular Ecology, 2002, 11, 869-877.	3.9	61
64	High-density linkage mapping and distribution of segregation distortion regions in the oak genome. DNA Research, 2016, 23, 115-124.	3.4	61
65	Drought differentially affects expression of a PRâ€10 protein, in needles of maritime pine (Pinus pinaster) Tj ETQ	q1_1_0.784 4.8	4314 rgBT /O
66	Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiology, 2003, 23, 169-179.	3.1	58
67	Separation and characterization of needle and xylem maritime pine proteins. Electrophoresis, 1999, 20, 1098-1108.	2.4	57
68	Seasonal variation in transcript accumulation in wood-forming tissues of maritime pine (Pinus) Tj ETQq0 0 0 rgB	[gverlocl	k 1 <u>0</u> Tf 50 22
69	Leaf proteome analysis of eight <i>Populus ×euramericana</i> genotypes: Genetic variation in drought response and in waterâ€use efficiency involves photosynthesisâ€related proteins. Proteomics, 2009, 9, 4121-4142.	2.2	57
70	Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theoretical and Applied Genetics, 2001, 102, 97-103.	3.6	54
71	Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genetics and Genomes, 2007, 3, 275-285.	1.6	54
72	Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biology, 2012, 12, 153.	3.6	54

#	Article	IF	CITATIONS
73	Combining proteomic and genetic studies in plants. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 137-149.	2.3	53
74	Highâ€density <scp>SNP</scp> assay development for genetic analysis in maritime pine (<i><scp>P</scp>inus pinaster</i>). Molecular Ecology Resources, 2016, 16, 574-587.	4.8	53
75	Title is missing!. Molecular Breeding, 2000, 6, 451-458.	2.1	52
76	In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?. PLoS ONE, 2010, 5, e11034.	2.5	52
77	Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genetics and Genomes, 2012, 8, 113-126.	1.6	51
78	Hardwood Tree Genomics: Unlocking Woody Plant Biology. Frontiers in Plant Science, 2018, 9, 1799.	3.6	50
79	Developing SSCP markers in two Pinus species. Molecular Breeding, 1999, 5, 21-31.	2.1	49
80	Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Molecular Breeding, 2000, 6, 441-449.	2.1	49
81	Genetic resources in maritime pine (Pinus pinaster Aiton): molecular and quantitative measures of genetic variation and differentiation among maternal lineages. Forest Ecology and Management, 2004, 197, 103-115.	3.2	49
82	Molecular and phenotypic profiling from the base to the crown in maritime pine woodâ€forming tissue. New Phytologist, 2008, 178, 283-301.	7.3	49
83	The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics, 2015, 16, 112.	2.8	49
84	Wood Formation in Trees. Plant Physiology, 2001, 127, 1513-1523.	4.8	48
85	Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus. BMC Genomics, 2011, 12, 301.	2.8	48
86	QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genetics and Genomes, 2006, 2, 10-24.	1.6	47
87	Secretome of the Free-living Mycelium from the Ectomycorrhizal Basidiomycete <i>Laccaria bicolor</i> . Journal of Proteome Research, 2012, 11, 157-171.	3.7	47
88	Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. New Phytologist, 2020, 226, 1183-1197.	7.3	46
89	Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait). BMC Plant Biology, 2013, 13, 95.	3.6	43
90	Singleâ€nucleotide polymorphism discovery and validation in highâ€density <scp>SNP</scp> array for genetic analysis in European white oaks. Molecular Ecology Resources, 2015, 15, 1446-1459.	4.8	43

#	Article	IF	CITATIONS
91	Recombination rate differences for pollen parents and seed parents in Pinus pinaster. Heredity, 1996, 77, 341-350.	2.6	42
92	PROTICdb: A web-based application to store, track, query, and compare plant proteome data. Proteomics, 2005, 5, 2069-2081.	2.2	42
93	Plasticity of maritime pine (<i>Pinus pinaster</i>) woodâ€forming tissues during a growing season. New Phytologist, 2008, 179, 1180-1194.	7.3	42
94	A micromethod for high throughput RNA extraction in forest trees. Biological Research, 2007, 40, 291-7.	3.4	42
95	Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine. BMC Genomics, 2014, 15, 171.	2.8	41
96	Microsatellite markers for Pinus pinaster Ait Annals of Forest Science, 2001, 58, 203-206.	2.0	39
97	Genetic variation and drought response in two Populus×euramericana genotypes through 2-DE proteomic analysis of leaves from field and glasshouse cultivated plants. Phytochemistry, 2009, 70, 988-1002.	2.9	39
98	Epigenetics in Forest Trees. Advances in Botanical Research, 2018, 88, 387-453.	1.1	37
99	Microsatellite primers for Sorbus torminalis and related species. Molecular Ecology Notes, 2001, 1, 297-299.	1.7	36
100	Role of waterlogging-responsive genes in shaping interspecific differentiation between two sympatric oak species. Tree Physiology, 2012, 32, 119-134.	3.1	36
101	Implication of the suberin pathway in adaptation to waterlogging and hypertrophied lenticels formation in pedunculate oak (<i>Quercus robur</i> L.). Tree Physiology, 2016, 36, tpw056.	3.1	36
102	Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness. PLoS ONE, 2016, 11, e0165323.	2.5	36
103	A unigene set for European beech (<i>Fagus sylvatica</i> L.) and its use to decipher the molecular mechanisms involved in dormancy regulation. Molecular Ecology Resources, 2015, 15, 1192-1204.	4.8	35
104	Heat induced changes in protein expression profiles of Norway spruce (<i>Picea abies</i>) ecotypes from different elevations. Proteomics, 2008, 8, 4287-4302.	2.2	34
105	Pollen contamination in a maritime pine polycross seed orchard and certification of improved seeds using chloroplast microsatellites. Canadian Journal of Forest Research, 2001, 31, 1816-1825.	1.7	33
106	Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome. BMC Genomics, 2011, 12, 292.	2.8	33
107	Plasticity of primary and secondary growth dynamics in Eucalyptushybrids: a quantitative genetics and QTL mapping perspective. BMC Plant Biology, 2013, 13, 120.	3.6	33
108	Paternity recovery in two maritime pine polycross mating designs and consequences for breeding. Tree Genetics and Genomes, 2015, 11, 1.	1.6	33

#	Article	IF	CITATIONS
109	Two genes encoding distinct cytosolic glutamine synthetases are closely linked in the pine genome. FEBS Letters, 2000, 477, 237-243.	2.8	32
110	Hunting down fungal secretomes using liquidâ€phase IEF prior to high resolution 2â€DE. Electrophoresis, 2009, 30, 4118-4136.	2.4	31
111	Characterisation and natural variation of a dehydrin gene in <i>Quercus petraea</i> (Matt.) Liebl Plant Biology, 2011, 13, 881-887.	3.8	30
112	<scp><i>Q</i>_{ST}</scp> _Â <Â <scp><i>F</i>_{ST}</scp> As a signature of canalization. Molecular Ecology, 2012, 21, 5646-5655.	3.9	30
113	Genetic determinism of δ3-carene in maritime pine using RAPD markers. Genome, 1996, 39, 1123-1127.	2.0	29
114	Proteomic plasticity of two <i>Eucalyptus</i> genotypes under contrasted water regimes in the field. Plant, Cell and Environment, 2012, 35, 790-805.	5.7	29
115	Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. Planta, 2006, 225, 331-340.	3.2	28
116	Genetic parameters of growth, straightness and wood chemistry traits in Pinus pinaster. Annals of Forest Science, 2011, 68, 873-884.	2.0	28
117	Evidence of intense chromosomal shuffling during conifer evolution. Genome Biology and Evolution, 2015, 7, evv185.	2.5	26
118	Origin identification of maritime pine stands in France using chloroplast simple-sequence repeats. Annals of Forest Science, 2002, 59, 53-62.	2.0	25
119	Transcriptional analysis of differentially expressed genes in response to stem inclination in young seedlings of pine. Plant Biology, 2012, 14, 923-933.	3.8	25
120	What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenance certification strategies?. Annals of Forest Science, 2002, 59, 699-708.	2.0	24
121	Quantitative trait loci mapping for vegetative propagation in pedunculate oak. Annals of Forest Science, 2005, 62, 369-374.	2.0	24
122	A linkage disequilibrium perspective on the genetic mosaic of speciation in two hybridizing Mediterranean white oaks. Heredity, 2015, 114, 373-386.	2.6	24
123	Genome-wide evolutionary response of European oaks during the Anthropocene. Evolution Letters, 2022, 6, 4-20.	3.3	24
124	Improved AFLP analysis of tree species. Canadian Journal of Forest Research, 2000, 30, 1608-1616.	1.7	23
125	(Not) Keeping the stem straight: a proteomic analysis of maritime pine seedlings undergoing phototropism and gravitropism. BMC Plant Biology, 2010, 10, 217.	3.6	23
126	Oak symbolism in the light of genomics. New Phytologist, 2020, 226, 1012-1017.	7.3	23

#	Article	IF	CITATIONS
127	Differential accumulation of soluble proteins in roots of metallicolous and nonmetallicolous populations of <i>Agrostis capillaris</i> L. exposed to Cu. Proteomics, 2014, 14, 1746-1758.	2.2	22
128	Oak genotype and phenolic compounds differently affect the performance of two insect herbivores with contrasting diet breadth. Tree Physiology, 2019, 39, 615-627.	3.1	22
129	Analysis of Protein Expression along the Normal to Tension Wood Gradient in Eucalyptus gunnii. Holzforschung, 2003, 57, 353-358.	1.9	21
130	Isolation and characterization of nuclear microsatellite loci in Pinus pinaster Ait. Molecular Ecology Notes, 2005, 5, 57-59.	1.7	21
131	Polygenic adaptation and negative selection across traits, years and environments in a longâ€lived plant species (<i>Pinus pinaster</i> Ait., Pinaceae). Molecular Ecology, 2022, 31, 2089-2105.	3.9	21
132	Genotype x environment interaction for root traits in maize, as analysed with factorial regression models. Euphytica, 1995, 81, 85-92.	1.2	20
133	Fagaceae Trees. , 2007, , 161-187.		20
134	Interaction between environmental factors affects the accumulation of root proteins in hydroponically grown Eucalyptus globulus (Labill.). Plant Physiology and Biochemistry, 2011, 49, 69-76.	5.8	20
135	Genetic architecture of carbon isotope composition and growth in <i><scp>E</scp>ucalyptus</i> across multiple environments. New Phytologist, 2015, 206, 1437-1449.	7.3	20
136	The genetics of exapted resistance to two exotic pathogens in pedunculate oak. New Phytologist, 2020, 226, 1088-1103.	7.3	20
137	Micro-evolutionary patterns of juvenile wood density in a pine species. Plant Ecology, 2012, 213, 1781-1792.	1.6	19
138	Osmotic adjustment in Pinus pinaster cuttings in response to a soil drying cycle. Annals of Forest Science, 2002, 59, 795-799.	2.0	18
139	Development of Target Sequence Capture and Estimation of Genomic Relatedness in a Mixed Oak Stand. Frontiers in Plant Science, 2018, 9, 996.	3.6	18
140	A candidate gene for lignin composition in Eucalyptus: cinnamoyl-CoA reductase (CCR). Tree Genetics and Genomes, 2012, 8, 353-364.	1.6	17
141	Contribution of two-dimensional electrophoresis of proteins to maritime pine genetics. Annales Des Sciences Forestières, 1997, 54, 225-236.	1.2	17
142	Understanding the genetic bases of adaptation to soil water deficit in trees through the examination of water use efficiency and cavitation resistance: maritime pine as a case study. The Journal of Plant Hydraulics, 0, 3, e008.	1.0	17
143	A Chromosome-Level Genome Assembly of the European Beech (Fagus sylvatica) Reveals Anomalies for Organelle DNA Integration, Repeat Content and Distribution of SNPs. Frontiers in Genetics, 2021, 12, 691058.	2.3	17
144	Genetic mapping of EST-derived simple sequence repeats (EST-SSRs) to identify QTL for leaf morphological characters in a Quercus robur full-sib family. Tree Genetics and Genomes, 2013, 9, 1361-1367.	1.6	16

#	Article	IF	CITATIONS
145	Forward selection in a maritime pine polycross progeny trial using pedigree reconstruction. Annals of Forest Science, 2017, 74, 1.	2.0	16
146	Marker trait association for autumn cold acclimation and growth rhythm in pinus sylvestris. Scandinavian Journal of Forest Research, 2003, 18, 29-38.	1.4	15
147	Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (Picea abies karst). Tree Genetics and Genomes, 2005, 1, 93-102.	1.6	15
148	Copper stressâ€induced changes in leaf soluble proteome of Cuâ€sensitive and tolerant <i>Agrostis capillaris</i> L. populations. Proteomics, 2016, 16, 1386-1397.	2.2	15
149	Linked selection shapes the landscape of genomic variation in three oak species. New Phytologist, 2022, 233, 555-568.	7.3	14
150	Genetic basis of growth, spring phenology, and susceptibility to biotic stressors in maritime pine. Evolutionary Applications, 2021, 14, 2750-2772.	3.1	14
151	A proteomic analysis of Spanish broom (Spartium junceum L.) root growing on a slope condition. Plant Science, 2006, 170, 926-935.	3.6	13
152	Pines. , 2007, , 29-92.		13
153	ACC Oxidase and ACC Synthase Expression Profiles after Leaning of Young Radiata (P. radiata D. Don) and Maritime Pine (P. pinaster Ait.) Seedlings. Journal of Plant Growth Regulation, 2012, 31, 382-391.	5.1	13
154	Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers. BMC Genomics, 2012, 13, 527.	2.8	13
155	Nucleotide polymorphisms in a pine ortholog of the <i>Arabidopsis</i> degrading enzyme cellulase KORRIGAN are associated with early growth performance in <i>Pinus pinaster</i> . Tree Physiology, 2015, 35, 1000-1006.	3.1	13
156	Quantitative Proteomic and Phosphoproteomic Approaches for Deciphering the Signaling Pathway for Tension Wood Formation in Poplar. Journal of Proteome Research, 2015, 14, 3188-3203.	3.7	12
157	Protein Polymorphism between 2 Picea abies Populations Revealed by 2-Dimensional Gel Electrophoresis and Tandem Mass Spectrometry. Journal of Heredity, 2008, 99, 364-375.	2.4	11
158	The GenTree Leaf Collection: Inter―and intraspecific leaf variation in seven forest tree species in Europe. Global Ecology and Biogeography, 2021, 30, 590-597.	5.8	11
159	Utilisation des marqueurs moléculaires dans les programmes d'amélioration génétique des arbres forestiers : exemple du pin maritime et de l'eucalyptus. Annales Des Sciences ForestiÃres, 1996, 53, 819-848.	1.2	10
160	Report on the Forest Trees Workshop at the Plant and Animal Genome Conference. Comparative and Functional Genomics, 2003, 4, 229-238.	2.0	10
161	Proteomic analysis during ontogenesis of secondary xylem in maritime pine. Tree Physiology, 2014, 34, 1263-1277.	3.1	10
162	Estimation of the average effects of specific alleles detected by the pseudo-testcross QTL mapping strategy. Genetics Selection Evolution, 1996, 28, 1.	3.0	9

#	Article	IF	CITATIONS
163	Integrated genetic mapping of 64 rat microsatellite markers from different sources. Mammalian Genome, 1997, 8, 282-283.	2.2	9
164	Oak genomics takes off $\hat{a} \in $ and enters the ecological genomics era. New Phytologist, 2013, 199, 308-310.	7.3	8
165	Higher needle anatomic plasticity is related to better water-use efficiency and higher resistance to embolism in fast-growing Pinus pinaster families under water scarcity. Trees - Structure and Function, 2021, 35, 287-306.	1.9	8
166	Combining Climatic and Genomic Data Improves Range-Wide Tree Height Growth Prediction in a Forest Tree. American Naturalist, 2022, 200, E141-E159.	2.1	8
167	Forest ecosystem genomics and adaptation: EVOLTREE conference report. Tree Genetics and Genomes, 2011, 7, 869-875.	1.6	7
168	A sample view of the pedunculate oak (Quercus robur) genome from the sequencing of hypomethylated and random genomic libraries. Tree Genetics and Genomes, 2011, 7, 1277-1285.	1.6	7
169	The pulse of the tree is under genetic control: eucalyptus as a case study. Plant Journal, 2020, 103, 338-356.	5.7	7
170	X-ray computed tomography to decipher the genetic architecture of tree branching traits: oak as a case study. Tree Genetics and Genomes, 2017, 13, 1.	1.6	6
171	Protein Extraction from Woody Plants. , 2007, 355, 37-42.		5
172	Nucleotide diversity in lignification genes and QTNs for lignin quality in a multi-parental population of Eucalyptus urophylla. Tree Genetics and Genomes, 2014, 10, 1281-1290.	1.6	5
173	Oak genomics is proving its worth. New Phytologist, 2020, 226, 943-946.	7.3	5
174	EucaMaps: linking genetic maps and associated QTLs to the Eucalyptus grandis genome. Tree Genetics and Genomes, 2015, 11, 1.	1.6	4
175	Tree species identity and forest composition affect the number of oak processionary moth captured in pheromone traps and the intensity of larval defoliation. Agricultural and Forest Entomology, 2020, 22, 169-177.	1.3	4
176	Maritime Pine Genomics in Focus. Compendium of Plant Genomes, 2022, , 67-123.	0.5	4
177	Genomic Resources Notes Accepted 1 August 2015 - 31 September 2015. Molecular Ecology Resources, 2016, 16, 377-377.	4.8	3
178	The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species. GigaScience, 2021, 10, .	6.4	3
179	Uncovering Signatures of DNA Methylation in Ancient Plant Remains From Patterns of Post-mortem DNA Damage. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	3
180	Oak Population Genomics. Population Genomics, 2021, , .	0.5	3

#	Article	IF	CITATIONS
181	La sélection assistée par marqueurs. Biofutur, 2000, 2000, 16-18.	0.0	2
182	Genetic Dissection of Phenotypic Traits in Maritime Pine Using Rapd and Protein Markers. Forestry Sciences, 1996, , 223-231.	0.4	2
183	Structural and functional characterization of tree proteins involved in redox regulation: a new frontier in forest science. Annals of Forest Science, 2016, 73, 119-134.	2.0	1
184	Paternity recovery in two maritime pine polycross mating designs and consequences for breeding. , 0, .		1
185	Poplar Proteomics. , 2011, , 128-165.		1
186	Genetic analysis using trans-dominant linked markers in an F 2 family. Theoretical and Applied Genetics, 1996, 93, 1083-1089.	3.6	1