List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/391605/publications.pdf Version: 2024-02-01

		4388	5120
333	31,721	86	166
papers	citations	h-index	g-index
338	338	338	18932
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose, 2022, 29, 1-23.	4.9	158
2	Interface effects from moisture in nanocomposites of 2D graphene oxide in cellulose nanofiber (CNF) matrix – A molecular dynamics study. Journal of Materials Chemistry A, 2022, 10, 2122-2132.	10.3	18
3	Structural basis for lignin recalcitrance during sulfite pulping for production of dissolving pulp from pine heartwood. Industrial Crops and Products, 2022, 177, 114391.	5.2	7
4	Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix. Carbohydrate Polymers, 2022, 279, 119004.	10.2	17
5	Strong, transparent, and thermochromic composite hydrogel from wood derived highly mesoporous cellulose network and PNIPAM. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106757.	7.6	18
6	Fully bio-based cellulose nanofiber/epoxy composites with both sustainable production and selective matrix deconstruction towards infinite fiber recycling systems. Journal of Materials Chemistry A, 2022, 10, 570-576.	10.3	23
7	Charge Regulated Diffusion of Silica Nanoparticles into Wood for Flame Retardant Transparent Wood. Advanced Sustainable Systems, 2022, 6, .	5.3	19
8	Fire-retardant and transparent wood biocomposite based on commercial thermoset. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106863.	7.6	30
9	Current international research into cellulose as a functional nanomaterial for advanced applications. Journal of Materials Science, 2022, 57, 5697-5767.	3.7	73
10	Photon Walk in Transparent Wood: Scattering and Absorption in Hierarchically Structured Materials. Advanced Optical Materials, 2022, 10, .	7.3	8
11	Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation. ACS Applied Materials & Interfaces, 2022, 14, 24697-24707.	8.0	34
12	Transverse fracture toughness of transparent wood biocomposites by FEM updating with cohesive zone fracture modeling. Composites Science and Technology, 2022, 225, 109492.	7.8	9
13	Water as an Intrinsic Structural Element in Cellulose Fibril Aggregates. Journal of Physical Chemistry Letters, 2022, 13, 5424-5430.	4.6	17
14	Scalable, efficient piezoelectric wood nanogenerators enabled by wood/ZnO nanocomposites. Composites Part A: Applied Science and Manufacturing, 2022, 160, 107057.	7.6	16
15	Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications. Journal of Materials Chemistry A, 2022, 10, 15677-15688.	10.3	11
16	Large-Area Transparent "Quantum Dot Glass―for Building-Integrated Photovoltaics. ACS Photonics, 2022, 9, 2499-2509.	6.6	19
17	Structural and Ecofriendly Holocellulose Materials from Wood: Microscale Fibers and Nanoscale Fibrils. Advanced Materials, 2021, 33, e2001118.	21.0	52
18	Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets. ACS Applied Materials & Interfaces, 2021, 13, 4463-4472.	8.0	25

#	Article	IF	CITATIONS
19	Eco-Friendly High-Strength Composites Based on Hot-Pressed Lignocellulose Microfibrils or Fibers. ACS Sustainable Chemistry and Engineering, 2021, 9, 1899-1910.	6.7	26
20	Single step PAA delignification of wood chips for high-performance holocellulose fibers. Cellulose, 2021, 28, 1873-1880.	4.9	14
21	Olive Stone Delignification Toward Efficient Adsorption of Metal Ions. Frontiers in Materials, 2021, 8,	2.4	5
22	Small Angle Neutron Scattering Shows Nanoscale PMMA Distribution in Transparent Wood Biocomposites. Nano Letters, 2021, 21, 2883-2890.	9.1	32
23	High-Strength Nanostructured Film Based on β-Chitin Nanofibrils from Squid <i>Illex argentinus</i> Pens by 2,2,6,6-Tetramethylpiperidin-1-yl Oxyl-Mediated Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 5356-5363.	6.7	5
24	Polymer Films from Cellulose Nanofibrils—Effects from Interfibrillar Interphase on Mechanical Behavior. Macromolecules, 2021, 54, 4443-4452.	4.8	37
25	Lignin as a Renewable Substrate for Polymers: From Molecular Understanding and Isolation to Targeted Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 5481-5485.	6.7	13
26	High Performance, Fully Bioâ€Based, and Optically Transparent Wood Biocomposites. Advanced Science, 2021, 8, 2100559.	11.2	72
27	Facile Processing of Transparent Wood Nanocomposites with Structural Color from Plasmonic Nanoparticles. Chemistry of Materials, 2021, 33, 3736-3745.	6.7	32
28	Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization. Frontiers in Chemistry, 2021, 9, 682883.	3.6	26
29	Wood Nanomaterials and Nanotechnologies. Advanced Materials, 2021, 33, e2006207.	21.0	39
30	Green and Fire Resistant Nanocellulose/Hemicellulose/Clay Foams. Advanced Materials Interfaces, 2021, 8, 2101111.	3.7	13
31	Sustainable Development of Hot-Pressed All-Lignocellulose Composites—Comparing Wood Fibers and Nanofibers. Polymers, 2021, 13, 2747.	4.5	20
32	Light Propagation in Transparent Wood: Efficient Rayâ€Tracing Simulation and Retrieving an Effective Refractive Index of Wood Scaffold. Advanced Photonics Research, 2021, 2, 2100135.	3.6	6
33	Bench-scale fire stability testing – Assessment of protective systems on carbon fibre reinforced polymer composites. Polymer Testing, 2021, 102, 107340.	4.8	4
34	Reversible Dual-Stimuli-Responsive Chromic Transparent Wood Biocomposites for Smart Window Applications. ACS Applied Materials & Interfaces, 2021, 13, 3270-3277.	8.0	47
35	Nanocellulose Xerogel as Template for Transparent, Thick, Flame-Retardant Polymer Nanocomposites. Nanomaterials, 2021, 11, 3032.	4.1	8
36	Recycling without Fiber Degradation—Strong Paper Structures for 3D Forming Based on Nanostructurally Tailored Wood Holocellulose Fibers. ACS Sustainable Chemistry and Engineering, 2020, 8, 1146-1154.	6.7	24

#	Article	IF	CITATIONS
37	Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State. ACS Nano, 2020, 14, 724-735.	14.6	130
38	Microfibrillated lignocellulose (MFLC) and nanopaper films from unbleached kraft softwood pulp. Cellulose, 2020, 27, 2325-2341.	4.9	30
39	Hierarchical micro-reactor as electrodes for water splitting by metal rod tipped carbon nanocapsule self-assembly in carbonized wood. Applied Catalysis B: Environmental, 2020, 264, 118536.	20.2	25
40	High-Strength Nanostructured Films Based on Well-Preserved α-Chitin Nanofibrils Disintegrated from Insect Cuticles. Biomacromolecules, 2020, 21, 604-612.	5.4	18
41	Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling. Biomacromolecules, 2020, 21, 597-603.	5.4	26
42	Strongly Improved Mechanical Properties of Thermoplastic Biocomposites by PCL Grafting inside Holocellulose Wood Fibers. ACS Sustainable Chemistry and Engineering, 2020, 8, 11977-11985.	6.7	27
43	Refractive index of delignified wood for transparent biocomposites. RSC Advances, 2020, 10, 40719-40724.	3.6	22
44	lce-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites. Renewable Energy, 2020, 160, 698-706.	8.9	32
45	Strong reinforcement effects in 2D cellulose nanofibril–graphene oxide (CNF–GO) nanocomposites due to GO-induced CNF ordering. Journal of Materials Chemistry A, 2020, 8, 17608-17620.	10.3	31
46	Selfâ€Densification of Highly Mesoporous Wood Structure into a Strong and Transparent Film. Advanced Materials, 2020, 32, e2003653.	21.0	99
47	Tailoring of rheological properties and structural polydispersity effects in microfibrillated cellulose suspensions. Cellulose, 2020, 27, 9227-9241.	4.9	25
48	Interface tailoring by a versatile functionalization platform for nanostructured wood biocomposites. Green Chemistry, 2020, 22, 8012-8023.	9.0	45
49	Surface modification effects on nanocellulose – molecular dynamics simulations using umbrella sampling and computational alchemy. Journal of Materials Chemistry A, 2020, 8, 23617-23627.	10.3	24
50	Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5, 642-666.	48.7	616
51	Top-Down Approach Making Anisotropic Cellulose Aerogels as Universal Substrates for Multifunctionalization. ACS Nano, 2020, 14, 7111-7120.	14.6	147
52	Lignin-Based Epoxy Resins: Unravelling the Relationship between Structure and Material Properties. Biomacromolecules, 2020, 21, 1920-1928.	5.4	118
53	Best Practice for Reporting Wet Mechanical Properties of Nanocellulose-Based Materials. Biomacromolecules, 2020, 21, 2536-2540.	5.4	30
54	Mild and Versatile Functionalization of Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites by Organocatalytic Surface Engineering. ACS Omega, 2020, 5, 19363-19370.	3.5	4

#	Article	IF	CITATIONS
55	Mechanical properties of transparent high strength biocomposites from delignified wood veneer. Composites Part A: Applied Science and Manufacturing, 2020, 133, 105853.	7.6	59
56	Toward Biocomposites Recycling: Localized Interphase Degradation in PCL-Cellulose Biocomposites and its Mitigation. Biomacromolecules, 2020, 21, 1795-1801.	5.4	7
57	Transmission Mueller-matrix characterization of transparent ramie films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	5
58	Transparent Wood Biocomposites by Fast UV-Curing for Reduced Light-Scattering through Wood/Thiol–ene Interface Design. ACS Applied Materials & Interfaces, 2020, 12, 46914-46922.	8.0	43
59	Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose–Poly(methyl methacrylate) Interface. Biomacromolecules, 2019, 20, 598-607.	5.4	15
60	Recyclable nanocomposite foams of Poly(vinyl alcohol), clay and cellulose nanofibrils – Mechanical properties and flame retardancy. Composites Science and Technology, 2019, 182, 107762.	7.8	19
61	Monodisperse highly ordered chitosan/cellulose nanocomposite foams. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105516.	7.6	20
62	Thickness Dependence of Optical Transmittance of Transparent Wood: Chemical Modification Effects. ACS Applied Materials & Interfaces, 2019, 11, 35451-35457.	8.0	72
63	Dynamic Nanocellulose Networks for Thermoset-like yet Recyclable Plastics with a High Melt Stiffness and Creep Resistance. Biomacromolecules, 2019, 20, 3924-3932.	5.4	13
64	Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates. Macromolecules, 2019, 52, 7278-7288.	4.8	20
65	Nanocellulose films with multiple functional nanoparticles in confined spatial distribution. Nanoscale Horizons, 2019, 4, 634-641.	8.0	46
66	High strength nanostructured films based on well-preserved β-chitin nanofibrils. Nanoscale, 2019, 11, 11001-11011.	5.6	35
67	Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance. ACS Applied Materials & amp; Interfaces, 2019, 11, 20465-20472.	8.0	139
68	Molecular Engineering of the Cellulose-Poly(Caprolactone) Bio-Nanocomposite Interface by Reactive Amphiphilic Copolymer Nanoparticles. ACS Nano, 2019, 13, 6409-6420.	14.6	26
69	Nanocomposites from Clay, Cellulose Nanofibrils, and Epoxy with Improved Moisture Stability for Coatings and Semistructural Applications. ACS Applied Nano Materials, 2019, 2, 3117-3126.	5.0	24
70	Nanostructure and Properties of Nacre-Inspired Clay/Cellulose Nanocomposites—Synchrotron X-ray Scattering Analysis. Macromolecules, 2019, 52, 3131-3140.	4.8	38
71	Transforming technical lignins to structurally defined star-copolymers under ambient conditions. Green Chemistry, 2019, 21, 2478-2486.	9.0	30
72	Optically Transparent Wood Substrate for Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 6061-6067.	6.7	89

#	Article	IF	CITATIONS
73	High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose. ACS Applied Materials & Interfaces, 2019, 11, 10310-10319.	8.0	52
74	Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres. Green Chemistry, 2019, 21, 5924-5933.	9.0	69
75	Towards optimised size distribution in commercial microfibrillated cellulose: a fractionation approach. Cellulose, 2019, 26, 1565-1575.	4.9	38
76	Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns. Advanced Electronic Materials, 2019, 5, 1800924.	5.1	19
77	Strong and Tough Chitin Film from α-Chitin Nanofibers Prepared by High Pressure Homogenization and Chitosan Addition. ACS Sustainable Chemistry and Engineering, 2019, 7, 1692-1697.	6.7	44
78	Wellâ€dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solventâ€free procedure in bulk. Polymer Composites, 2019, 40, E456.	4.6	21
79	Effect of transparent wood on the polarization degree of light. Optics Letters, 2019, 44, 2962.	3.3	10
80	Bioinspired Wood Nanotechnology for Functional Materials. Advanced Materials, 2018, 30, e1704285.	21.0	341
81	Tunable Thermosetting Epoxies Based on Fractionated and Well-Characterized Lignins. Journal of the American Chemical Society, 2018, 140, 4054-4061.	13.7	220
82	Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of ¹³ C NMR Relaxation Times and Their Distributions. Biomacromolecules, 2018, 19, 2567-2579.	5.4	18
83	Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films. Biomacromolecules, 2018, 19, 2423-2431.	5.4	30
84	Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4â€Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes. ChemSusChem, 2018, 11, 854-863.	6.8	115
85	Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures. ACS Nano, 2018, 12, 2222-2230.	14.6	272
86	Recyclable and superelastic aerogels based on carbon nanotubes and carboxymethyl cellulose. Composites Science and Technology, 2018, 159, 1-10.	7.8	31
87	Transparent wood for functional and structural applications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170182.	3.4	85
88	Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp. Cellulose, 2018, 25, 3121-3133.	4.9	108
89	The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites. Composites Science and Technology, 2018, 162, 215-224.	7.8	31
90	Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring. Biomacromolecules, 2018, 19, 2341-2350.	5.4	63

#	Article	IF	CITATIONS
91	Poly(ε-caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 6753-6760.	6.7	31
92	Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydrate Polymers, 2018, 181, 256-263.	10.2	19
93	Nematic structuring of transparent and multifunctional nanocellulose papers. Nanoscale Horizons, 2018, 3, 28-34.	8.0	89
94	Towards centimeter thick transparent wood through interface manipulation. Journal of Materials Chemistry A, 2018, 6, 1094-1101.	10.3	121
95	Water-Based Approach to High-Strength All-Cellulose Material with Optical Transparency. ACS Sustainable Chemistry and Engineering, 2018, 6, 501-510.	6.7	22
96	Polymer photonics and nano-materials for optical communication. , 2018, , .		0
97	Tailoring Nanocellulose–Cellulose Triacetate Interfaces by Varying the Surface Grafting Density of Poly(ethylene glycol). ACS Omega, 2018, 3, 11883-11889.	3.5	12
98	Light Scattering by Structurally Anisotropic Media: A Benchmark with Transparent Wood. Advanced Optical Materials, 2018, 6, 1800999.	7.3	39
99	Improved Cellulose Nanofibril Dispersion in Melt-Processed Polycaprolactone Nanocomposites by a Latex-Mediated Interphase and Wet Feeding as LDPE Alternative. ACS Applied Nano Materials, 2018, 1, 2669-2677.	5.0	34
100	Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency. Biomacromolecules, 2018, 19, 3020-3029.	5.4	59
101	Complete spatial coherence characterization of quasi-random laser emission from dye doped transparent wood. Optics Express, 2018, 26, 13474.	3.4	14
102	Optically Transparent Wood: Recent Progress, Opportunities, and Challenges. Advanced Optical Materials, 2018, 6, 1800059.	7.3	135
103	Transparent plywood as a load-bearing and luminescent biocomposite. Composites Science and Technology, 2018, 164, 296-303.	7.8	90
104	Toward Sustainable Multifunctional Coatings Containing Nanocellulose in a Hybrid Glass Matrix. ACS Nano, 2018, 12, 5495-5503.	14.6	25
105	High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils. ACS Applied Materials & Interfaces, 2017, 9, 6453-6461.	8.0	86
106	Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 96, 147-154.	7.6	27
107	Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper. Journal of Materials Science, 2017, 52, 9508-9519.	3.7	40
108	Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 20169-20178.	8.0	93

#	Article	IF	CITATIONS
109	Lasing from Organic Dye Molecules Embedded in Transparent Wood. Advanced Optical Materials, 2017, 5, 1700057.	7.3	87
110	Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy, 2017, 34, 541-548.	16.0	128
111	Swelling and dimensional stability of xyloglucan/montmorillonite nanocomposites in moist conditions from molecular dynamics simulations. Computational Materials Science, 2017, 128, 191-197.	3.0	4
112	Transparent Wood: Luminescent Transparent Wood (Advanced Optical Materials 1/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
113	Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall. ACS Applied Materials & Interfaces, 2017, 9, 36154-36163.	8.0	175
114	Ligninâ€Retaining Transparent Wood. ChemSusChem, 2017, 10, 3445-3451.	6.8	192
115	Estimating the Strength of Single Chitin Nanofibrils via Sonication-Induced Fragmentation. Biomacromolecules, 2017, 18, 4405-4410.	5.4	56
116	Luminescent Transparent Wood. Advanced Optical Materials, 2017, 5, 1600834.	7.3	116
117	Nanostructurally Controlled Hydrogel Based on Smallâ€Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties. ChemSusChem, 2016, 9, 989-995.	6.8	63
118	Mechanical performance and architecture of biocomposite honeycombs and foams from core–shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 2016, 88, 116-122.	7.6	32
119	Role of hydrogen bonding in cellulose deformation: the leverage effect analyzed by molecular modeling. Cellulose, 2016, 23, 2315-2323.	4.9	29
120	Interface tailoring through covalent hydroxyl-epoxy bonds improves hygromechanical stability in nanocellulose materials. Composites Science and Technology, 2016, 134, 175-183.	7.8	21
121	Extreme Thermal Shielding Effects in Nanopaper Based on Multilayers of Aligned Clay Nanoplatelets in Cellulose Nanofiber Matrix. Advanced Materials Interfaces, 2016, 3, 1600551.	3.7	30
122	Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance. Biomacromolecules, 2016, 17, 1358-1364.	5.4	384
123	Clay nanopaper as multifunctional brick and mortar fire protection coating—Wood case study. Materials and Design, 2016, 93, 357-363.	7.0	80
124	Transparent wood as a novel material for non-cavity laser. , 2016, , .		1
125	Which Patients With Low Back Pain Benefit From Deadlift Training?. Journal of Strength and Conditioning Research, 2015, 29, 1803-1811.	2.1	22
126	Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds. Carbohydrate Polymers, 2015, 130, 175-182.	10.2	31

#	Article	IF	CITATIONS
127	A comparison between micro- and nanocellulose-filled composite adhesives for oil paintings restoration. Nanocomposites, 2015, 1, 195-203.	4.2	29
128	Bio-inspired functional wood-based materials – hybrids and replicates. International Materials Reviews, 2015, 60, 431-450.	19.3	98
129	High-Performance and Moisture-Stable Cellulose–Starch Nanocomposites Based on Bioinspired Core–Shell Nanofibers. Biomacromolecules, 2015, 16, 904-912.	5.4	78
130	Molecular Adhesion at Clay Nanocomposite Interfaces Depends on Counterion Hydration–Molecular Dynamics Simulation of Montmorillonite/Xyloglucan. Biomacromolecules, 2015, 16, 257-265.	5.4	15
131	Oriented Clay Nanopaper from Biobased Components—Mechanisms for Superior Fire Protection Properties. ACS Applied Materials & Interfaces, 2015, 7, 5847-5856.	8.0	108
132	Nanocellulose–Zeolite Composite Films for Odor Elimination. ACS Applied Materials & Interfaces, 2015, 7, 14254-14262.	8.0	44
133	Influence of processing routes on morphology and low strain stiffness of polymer/nanofibrillated cellulose composites. Plastics, Rubber and Composites, 2015, 44, 81-86.	2.0	2
134	Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper. Biomacromolecules, 2015, 16, 2427-2435.	5.4	75
135	Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Composites Science and Technology, 2015, 117, 298-306.	7.8	84
136	Nanostructural Effects on Polymer and Water Dynamics in Cellulose Biocomposites: ² H and ¹³ C NMR Relaxometry. Biomacromolecules, 2015, 16, 1506-1515.	5.4	33
137	Hierarchical wood cellulose fiber/epoxy biocomposites – Materials design of fiber porosity and nanostructure. Composites Part A: Applied Science and Manufacturing, 2015, 74, 60-68.	7.6	52
138	Core–shell cellulose nanofibers for biocomposites – Nanostructural effects in hydrated state. Carbohydrate Polymers, 2015, 125, 92-102.	10.2	44
139	Low-Birefringent and Highly Tough Nanocellulose-Reinforced Cellulose Triacetate. ACS Applied Materials & Interfaces, 2015, 7, 11041-11046.	8.0	44
140	Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Nanoscale, 2015, 7, 17957-17963.	5.6	76
141	Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix. Biomacromolecules, 2015, 16, 3916-3924.	5.4	54
142	Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. Journal of Materials Science, 2015, 50, 7413-7423.	3.7	34
143	Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol–ene Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 16303-16310.	8.0	124
144	"Brick-and-Mortar―Composites of Platelet-Reinforced Polymers. , 2015, , 1-8.		0

9

#	Article	IF	CITATIONS
145	Cellulose Nanocomposites by Melt Compounding of TEMPO-Treated Wood Fibers in Thermoplastic Starch Matrix. BioResources, 2014, 9, .	1.0	27
146	Nanopaper membranes from chitin–protein composite nanofibers—structure and mechanical properties. Journal of Applied Polymer Science, 2014, 131, .	2.6	25
147	Toughness and Strength of Wood Cellulose-based Nanopaper and Nanocomposites. Materials and Energy, 2014, , 121-129.	0.1	1
148	Surface modification of cellulose nanocrystals by grafting with poly(lactic acid). Polymer International, 2014, 63, 1056-1062.	3.1	52
149	Superior mechanical performance of highly porous, anisotropic nanocellulose–montmorillonite aerogels prepared by freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 88-99.	3.1	131
150	Nanofibrillated cellulose reinforced acetylated arabinoxylan films. Composites Science and Technology, 2014, 98, 72-78.	7.8	28
151	Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Composites Part A: Applied Science and Manufacturing, 2014, 63, 35-44.	7.6	153
152	Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 2467-2476.	14.6	325
153	Water-soluble hemicelluloses for high humidity applications – enzymatic modification of xyloglucan for mechanical and oxygen barrier properties. Green Chemistry, 2014, 16, 1904-1910.	9.0	34
154	Cellulose Nanofiber/Nanocrystal Reinforced Capsules: A Fast and Facile Approach Toward Assembly of Liquid-Core Capsules with High Mechanical Stability. Biomacromolecules, 2014, 15, 1852-1859.	5.4	71
155	Strong and Moldable Cellulose Magnets with High Ferrite Nanoparticle Content. ACS Applied Materials & Interfaces, 2014, 6, 20524-20534.	8.0	17
156	Controlled deposition of magnetic particles within the 3-D template of wood: making use of the natural hierarchical structure of wood. RSC Advances, 2014, 4, 35678-35685.	3.6	35
157	UVâ€cured cellulose nanofiber composites with moisture durable oxygen barrier properties. Journal of Applied Polymer Science, 2014, 131, .	2.6	28
158	Preparation of Double Pickering Emulsions Stabilized by Chemically Tailored Nanocelluloses. Langmuir, 2014, 30, 9327-9335.	3.5	213
159	Molecular dynamics simulation of strong interaction mechanisms at wet interfaces in clay–polysaccharide nanocomposites. Journal of Materials Chemistry A, 2014, 2, 9541-9547.	10.3	27
160	Multipurpose Ultra and Superhydrophobic Surfaces Based on Oligodimethylsiloxane-Modified Nanosilica. ACS Applied Materials & Interfaces, 2014, 6, 18998-19010.	8.0	36
161	Ductile All-Cellulose Nanocomposite Films Fabricated from Core–Shell Structured Cellulose Nanofibrils. Biomacromolecules, 2014, 15, 2218-2223.	5.4	84
162	On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 2014, 105, 15-27.	7.8	669

LARS A. BERGLUND

#	Article	IF	CITATIONS
163	Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption. Cellulose, 2014, 21, 2773-2787.	4.9	67
164	Highly ductile fibres and sheets by core-shell structuring of the cellulose nanofibrils. Cellulose, 2014, 21, 323-333.	4.9	68
165	Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. Journal of Materials Science, 2014, 49, 5043-5055.	3.7	14
166	Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydrate Polymers, 2014, 112, 255-263.	10.2	84
167	Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan. Frontiers in Chemistry, 2014, 2, 99.	3.6	49
168	Deoxyguanosine Phosphate Mediated Sacrificial Bonds Promote Synergistic Mechanical Properties in Nacre-Mimetic Nanocomposites. Biomacromolecules, 2013, 14, 2531-2535.	5.4	22
169	Multifunctional Nanoclay Hybrids of High Toughness, Thermal, and Barrier Performances. ACS Applied Materials & Interfaces, 2013, 5, 7613-7620.	8.0	71
170	An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules, 2013, 14, 248-253.	5.4	507
171	Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Composites Science and Technology, 2013, 87, 103-110.	7.8	94
172	High-Strength Nanocellulose–Talc Hybrid Barrier Films. ACS Applied Materials & Interfaces, 2013, 5, 13412-13418.	8.0	94
173	Nacre-Mimetic Clay/Xyloglucan Bionanocomposites: A Chemical Modification Route for Hygromechanical Performance at High Humidity. Biomacromolecules, 2013, 14, 3842-3849.	5.4	49
174	Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose. European Polymer Journal, 2013, 49, 940-949.	5.4	76
175	Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chemistry, 2013, 15, 3404.	9.0	129
176	Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure. Carbohydrate Polymers, 2013, 92, 751-757.	10.2	119
177	Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. Journal of Materials Chemistry B, 2013, 1, 835-840.	5.8	25
178	Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films. Carbohydrate Polymers, 2013, 93, 466-472.	10.2	31
179	Cellulose nanofibers decorated with magnetic nanoparticles – synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. Journal of Materials Chemistry C, 2013, 1, 7963.	5.5	106
180	In situ polymerization and characterization of elastomeric polyurethane-cellulose nanocrystal nanocomposites. Cell response evaluation. Cellulose, 2013, 20, 1819-1828.	4.9	50

#	Article	IF	CITATIONS
181	Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter, 2013, 9, 2047.	2.7	294
182	Bioinspired and Highly Oriented Clay Nanocomposites with a Xyloglucan Biopolymer Matrix: Extending the Range of Mechanical and Barrier Properties. Biomacromolecules, 2013, 14, 84-91.	5.4	68
183	Mechanical performance of yew (<i>Taxus baccata</i> L.) from a longbow perspective. Holzforschung, 2013, 67, 763-770.	1.9	6
184	BIOREFINERY: Nanofibrillated cellulose for enhancement of strength in high-density paper structures. Nordic Pulp and Paper Research Journal, 2013, 28, 182-189.	0.7	63
185	Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids. PLoS ONE, 2012, 7, e45828.	2.5	78
186	Micromechanical Tensile Testing of Cellulose-Reinforced Electrospun Fibers Using a Template Transfer Method (TTM). Journal of Polymers and the Environment, 2012, 20, 967-975.	5.0	12
187	The transparent crab: preparation and nanostructural implications for bioinspired optically transparent nanocomposites. Soft Matter, 2012, 8, 1369-1373.	2.7	43
188	Deformation of cellulose nanocrystals: entropy, internal energy and temperature dependence. Cellulose, 2012, 19, 1821-1836.	4.9	64
189	Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polymer Degradation and Stability, 2012, 97, 2027-2036.	5.8	193
190	Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. Journal of Materials Chemistry, 2012, 22, 19798.	6.7	282
191	Facile Preparation Route for Nanostructured Composites: Surface-Initiated Ring-Opening Polymerization of Îμ-Caprolactone from High-Surface-Area Nanopaper. ACS Applied Materials & Interfaces, 2012, 4, 3191-3198.	8.0	40
192	Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing. ACS Applied Materials & Interfaces, 2012, 4, 1043-1049.	8.0	299
193	Stretchable and Strong Cellulose Nanopaper Structures Based on Polymer-Coated Nanofiber Networks: An Alternative to Nonwoven Porous Membranes from Electrospinning. Biomacromolecules, 2012, 13, 3661-3667.	5.4	87
194	Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 19014.	6.7	136
195	State of Degradation in Archeological Oak from the 17th Century <i>Vasa</i> Ship: Substantial Strength Loss Correlates with Reduction in (Holo)Cellulose Molecular Weight. Biomacromolecules, 2012, 13, 2521-2527.	5.4	57
196	Polylactide latex/nanofibrillated cellulose bionanocomposites of high nanofibrillated cellulose content and nanopaper network structure prepared by a papermaking route. Journal of Applied Polymer Science, 2012, 125, 2460-2466.	2.6	41
197	Arabinoxylan/nanofibrillated cellulose composite films. Journal of Materials Science, 2012, 47, 6724-6732.	3.7	50
198	Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers—Improvements due to chitosan addition. Carbobydrate Polymers, 2012, 87, 53-60	10.2	103

#	Article	IF	CITATIONS
199	Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers, 2012, 87, 1596-1605.	10.2	538
200	Plasticized xyloglucan for improved toughness—Thermal and mechanical behaviour. Carbohydrate Polymers, 2012, 87, 2532-2537.	10.2	23
201	Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose, 2012, 19, 1-12.	4.9	38
202	Effect of Steam Treatment on the Properties of Wood Cell Walls. Biomacromolecules, 2011, 12, 194-202.	5.4	139
203	Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter, 2011, 7, 7342.	2.7	153
204	Cellulose Nanocomposite Biopolymer Foam—Hierarchical Structure Effects on Energy Absorption. ACS Applied Materials & Interfaces, 2011, 3, 1411-1417.	8.0	80
205	Strong and Tough Cellulose Nanopaper with High Specific Surface Area and Porosity. Biomacromolecules, 2011, 12, 3638-3644.	5.4	432
206	Colloidal Ionic Assembly between Anionic Native Cellulose Nanofibrils and Cationic Block Copolymer Micelles into Biomimetic Nanocomposites. Biomacromolecules, 2011, 12, 2074-2081.	5.4	78
207	Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions. Biomacromolecules, 2011, 12, 633-641.	5.4	383
208	A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose. Journal of Chemical Theory and Computation, 2011, 7, 753-760.	5.3	79
209	Strong Nanocomposite Reinforcement Effects in Polyurethane Elastomer with Low Volume Fraction of Cellulose Nanocrystals. Macromolecules, 2011, 44, 4422-4427.	4.8	365
210	High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Composites Science and Technology, 2011, 71, 1593-1599.	7.8	479
211	12. Wood biocomposites $\hat{a} \in $ extending the property range of paper products. , 2011, , 231-254.		4
212	Isocyanate-rich cellulose nanocrystals and their selective insertion in elastomeric polyurethane. Composites Science and Technology, 2011, 71, 1953-1960.	7.8	91
213	Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates. Composites Science and Technology, 2011, 71, 13-17.	7.8	41
214	Characterization of wellâ€defined poly(ethylene glycol) hydrogels prepared by thiolâ€ene chemistry. Journal of Polymer Science Part A, 2011, 49, 4044-4054.	2.3	58
215	Property tailoring of phenolâ \in "formaldehyde matrices by control of reactant molar ratio and thermoplastic modification. Polymer International, 2011, 60, 851-858.	3.1	0
216	Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(Îμ-caprolactone) bilayer laminate. Composites Science and Technology, 2011, 71, 9-12.	7.8	41

#	Article	IF	CITATIONS
217	Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Composites Science and Technology, 2011, 71, 382-387.	7.8	152
218	A multinuclear magnetic resonance imaging (MRI) study of wood with adsorbed water: Estimating bound water concentration and local wood density. Holzforschung, 2011, 65, 103-107.	1.9	52
219	Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – Crystallization and mechanical property effects. Composites Science and Technology, 2010, 70, 815-821.	7.8	459
220	Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 2010, 45, 1-33.	3.7	2,042
221	Supramolecular Control of Stiffness and Strength in Lightweight Highâ€Performance Nacreâ€Mimetic Paper with Fireâ€Shielding Properties. Angewandte Chemie - International Edition, 2010, 49, 6448-6453.	13.8	204
222	A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Composites Science and Technology, 2010, 70, 1704-1712.	7.8	55
223	Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 2010, 81, 394-401.	10.2	209
224	Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotechnology, 2010, 5, 584-588.	31.5	753
225	Towards improved understanding of PEG-impregnated waterlogged archaeological wood: A model study on recent oak. Holzforschung, 2010, 64, .	1.9	43
226	Ultrastructure and Mechanical Properties of Populus Wood with Reduced Lignin Content Caused by Transgenic Down-Regulation of Cinnamate 4-Hydroxylase. Biomacromolecules, 2010, 11, 2359-2365.	5.4	87
227	Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures. Biomacromolecules, 2010, 11, 2195-2198.	5.4	351
228	Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways. Nano Letters, 2010, 10, 2742-2748.	9.1	435
229	Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. Journal of Materials Chemistry, 2010, 20, 6646.	6.7	97
230	Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter, 2010, 6, 1824.	2.7	400
231	Tamarind seed xyloglucan – a thermostable high-performance biopolymer from non-food feedstock. Journal of Materials Chemistry, 2010, 20, 4321.	6.7	50
232	Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems. MRS Bulletin, 2010, 35, 201-207.	3.5	168
233	Electron-Beam-Initiated Polymerization of Poly(ethylene glycol)-Based Wood Impregnants. ACS Applied Materials & Interfaces, 2010, 2, 3352-3362.	8.0	53
234	The single cube apparatus for shear testing – Full-field strain data and finite element analysis of wood in transverse shear. Composites Science and Technology, 2009, 69, 877-882.	7.8	37

#	Article	IF	CITATIONS
235	Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Composites Science and Technology, 2009, 69, 500-506.	7.8	192
236	Functional gradient effects explain the low transverse shear modulus in spruce – Full-field strain data and a micromechanics model. Composites Science and Technology, 2009, 69, 2491-2496.	7.8	9
237	Force Pulling of Single Cellulose Chains at the Crystalline Celluloseâ^'Liquid Interface: A Molecular Dynamics Study. Langmuir, 2009, 25, 4635-4642.	3.5	39
238	Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter, 2009, 5, 4124.	2.7	83
239	Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs. Faraday Discussions, 2009, 143, 95.	3.2	34
240	Mechanical characterization of juvenile European aspen (Populus tremula) and hybrid aspen (Populus) Tj ETQq0 C 54, 349-355.) 0 rgBT /C 1.9	Overlock 10 T 16
241	Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils. Advanced Materials, 2008, 20, 1263-1269.	21.0	308
242	A two-phase annual ring model of transverse anisotropy in softwoods. Composites Science and Technology, 2008, 68, 3020-3026.	7.8	12
243	Surface grafting of microfibrillated cellulose with poly(ε-caprolactone) – Synthesis and characterization. European Polymer Journal, 2008, 44, 2991-2997.	5.4	182
244	Molecular modeling of interfaces between cellulose crystals and surrounding molecules: Effects of caprolactone surface grafting. European Polymer Journal, 2008, 44, 3662-3669.	5.4	39
245	Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 2008, 4, 2492.	2.7	595
246	Dynamics of Celluloseâ^'Water Interfaces:  NMR Spinâ^'Lattice Relaxation Times Calculated from Atomistic Computer Simulations. Journal of Physical Chemistry B, 2008, 112, 2590-2595.	2.6	74
247	Cellulose Nanopaper Structures of High Toughness. Biomacromolecules, 2008, 9, 1579-1585.	5.4	1,096
248	Elastic deformation mechanisms of softwoods in radial tension – Cell wall bending or stretching?. Holzforschung, 2008, 62, 562-568.	1.9	18
249	Transverse mechanical behaviour and moisture absorption of waterlogged archaeological wood from the Vasa ship. Holzforschung, 2007, 61, 279-284.	1.9	24
250	Thermal Response in Crystalline Iβ Cellulose:  A Molecular Dynamics Study. Journal of Physical Chemistry B, 2007, 111, 9138-9145.	2.6	171
251	Biomimetic Polysaccharide Nanocomposites of High Cellulose Content and High Toughness. Biomacromolecules, 2007, 8, 2556-2563.	5.4	276
252	A High Strength Nanocomposite Based on Microcrystalline Cellulose and Polyurethane. Biomacromolecules, 2007, 8, 3687-3692.	5.4	248

LARS A. BERGLUND

#	Article	IF	CITATIONS
253	Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. Journal of Applied Polymer Science, 2007, 106, 2817-2824.	2.6	283
254	An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 2007, 43, 3434-3441.	5.4	1,037
255	Shear coupling effects on stress and strain distributions in wood subjected to transverse compression. Composites Science and Technology, 2007, 67, 1362-1369.	7.8	18
256	Toughening of wood particle composites—Effects of sisal fibers. Journal of Applied Polymer Science, 2006, 101, 1982-1987.	2.6	9
257	Transverse anisotropy of compressive failure in European oak – a digital speckle photography study. Holzforschung, 2006, 60, 190-195.	1.9	31
258	Polyamide 6/clay nanocomposites using a cointercalation organophilic clay via melt compounding. Journal of Applied Polymer Science, 2003, 88, 953-958.	2.6	44
259	Effect of light power density variations on bulk curing properties of dental composites. Journal of Dentistry, 2003, 31, 189-196.	4.1	116
260	Mechanical behaviour of SMC composites with toughening and low density additives. Composites Part A: Applied Science and Manufacturing, 2003, 34, 875-885.	7.6	36
261	Strain field inhomogeneities and stiffness changes in GMT containing voids. Composites Part A: Applied Science and Manufacturing, 2002, 33, 75-85.	7.6	16
262	Investigation on Unusual Crystallization Behavior in Polyamide 6/Montmorillonite Nanocomposites. Macromolecular Materials and Engineering, 2002, 287, 515-522.	3.6	81
263	Morphology and mechanical properties of unidirectional sisal- epoxy composites. Journal of Applied Polymer Science, 2002, 84, 2358-2365.	2.6	205
264	Synthesis of amine-cured, epoxy-layered silicate nanocomposites: The influence of the silicate surface modification on the properties. Journal of Applied Polymer Science, 2002, 86, 2643-2652.	2.6	101
265	Modeling of cell wall drying stresses in wood. Wood Science and Technology, 2002, 36, 241-254.	3.2	31
266	High-temperature X-ray diffraction studies on polyamide6/clay nanocomposites upon annealing. Polymer Bulletin, 2002, 48, 381-387.	3.3	14
267	High performance epoxy-layered silicate nanocomposites. Polymer Engineering and Science, 2002, 42, 1815-1826.	3.1	130
268	FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites. Polymer, 2002, 43, 2445-2449.	3.8	138
269	Morphological variations in PMMA-modified epoxy mixtures by PEO addition. Polymer, 2002, 43, 1241-1248.	3.8	36
270	Polymorphism in polyamide 66/clay nanocomposites. Polymer, 2002, 43, 4967-4972.	3.8	151

#	Article	IF	CITATIONS
271	Morphology and mechanical properties of unidirectional sisal– epoxy composites. Journal of Applied Polymer Science, 2002, 84, 2358-2365.	2.6	1
272	458° Flexure Test for Measurement of In-Plane Shear Modulus. Journal of Composite Materials, 2002, 36, 2313-2337.	2.4	9
273	Effects of an impregnation procedure for prevention of wood cell wall damage due to drying. Wood Science and Technology, 2001, 34, 473-480.	3.2	16
274	Bridging law and toughness characterisation of CSM and SMC composites. Composites Science and Technology, 2001, 61, 2445-2454.	7.8	33
275	Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer, 2001, 42, 1303-1310.	3.8	546
276	Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure. Polymer, 2001, 42, 4493-4499.	3.8	401
277	Polyamide 6-clay nanocomposites/polypropylene-grafted-maleic anhydride alloys. Polymer, 2001, 42, 8235-8239.	3.8	97
278	An Unusual Crystallization Behavior in Polyamide 6/Montmorillonite Nanocomposites. Macromolecular Rapid Communications, 2001, 22, 1438-1440.	3.9	86
279	Toughening of electron-beam cured acrylate resins. Macromolecular Materials and Engineering, 2000, 280-281, 20-25.	3.6	13
280	Application of bridging-law concepts to short-fibre compositesPart 1: DCB test procedures for bridging law and fracture energy. Composites Science and Technology, 2000, 60, 871-883.	7.8	40
281	Application of bridging-law concepts to short-fibre composites 4. FEM analysis of notched tensile specimens. Composites Science and Technology, 2000, 60, 2895-2901.	7.8	6
282	Micro- and meso-level residual stresses in glass-fiber/vinyl-ester composites. Composites Science and Technology, 2000, 60, 2011-2028.	7.8	31
283	The effects of matrix and interface on damage in GRP cross-ply laminates. Composites Science and Technology, 2000, 60, 9-21.	7.8	37
284	Application of bridging-law concepts to short-fibre compositesPart 2: Notch sensitivity. Composites Science and Technology, 2000, 60, 885-893.	7.8	17
285	Application of bridging-law concepts to short-fibre composites Part 3: Bridging law derivation from experimental crack profiles. Composites Science and Technology, 2000, 60, 2883-2894.	7.8	17
286	Measurements of crack tip strain field in wood at the scale of growth rings. Journal of Materials Science, 2000, 35, 6267-6275.	3.7	18
287	In situ observations of fracture mechanisms for radial cracks in wood. Journal of Materials Science, 2000, 35, 6277-6283.	3.7	32
288	Stiffness Improvements and Molecular Mobility in Epoxy-Clay Nanocomposites. Materials Research Society Symposia Proceedings, 2000, 628, 1.	0.1	17

#	Article	IF	CITATIONS
289	Effects of glass fiber size composition (film-former type) on transverse cracking in cross-ply laminates. Composites Part A: Applied Science and Manufacturing, 2000, 31, 1083-1090.	7.6	7
290	Toughening mechanisms in rubber-modified glass fiber/unsaturated polyester composites. Polymer Composites, 1999, 20, 705-712.	4.6	13
291	Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene. Composites Science and Technology, 1999, 59, 759-768.	7.8	93
292	Estimation of interfacial shear strength: an application of a new statistical theory for single fiber composite test. Composites Science and Technology, 1999, 59, 2037-2046.	7.8	24
293	Non-parametric Statistical Formulas for Factors of Safety of Plant Stems. Journal of Theoretical Biology, 1999, 197, 135-147.	1.7	4
294	Microscopy of the morphology in low styrene emission glass fiber/unsaturated polyester laminates. Journal of Applied Polymer Science, 1999, 71, 1555-1562.	2.6	8
295	Effects of fibre coating (size) on properties of glass fibre/vinyl ester composites. Composites Part A: Applied Science and Manufacturing, 1999, 30, 1009-1015.	7.6	31
296	Microscopical damage mechanisms in glass fiber reinforced polypropylene. Journal of Applied Polymer Science, 1998, 69, 1319-1327.	2.6	20
297	Nanocomposites based on montmorillonite and unsaturated polyester. Polymer Engineering and Science, 1998, 38, 1351-1358.	3.1	292
298	A multiple fracture test for strain to failure distribution in wood. Wood Science and Technology, 1998, 32, 227-235.	3.2	7
299	A multiple fracture test for strain to failure distribution in wood. Wood Science and Technology, 1998, 32, 227-235.	3.2	0
300	Low Temperature Strength and Notch Sensitivity of Glass Mat Polypropylene. Journal of Cold Regions Engineering - ASCE, 1997, 11, 180-197.	1.1	9
301	Crack Opening Geometry in Cracked Composite Laminates. International Journal of Damage Mechanics, 1997, 6, 96-118.	4.2	13
302	Transverse single-fibre test for interfacial debonding in composites: 1. Experimental observations. Composites Part A: Applied Science and Manufacturing, 1997, 28, 309-315.	7.6	79
303	Transverse single-fibre test for interfacial debonding in composites: 2. Modelling. Composites Part A: Applied Science and Manufacturing, 1997, 28, 317-326.	7.6	76
304	Manufacturing and performance of RTM U-beams. Composites Part A: Applied Science and Manufacturing, 1997, 28, 513-521.	7.6	31
305	Micromechanisms of delamination failure in RTM U-beams. Composites Part A: Applied Science and Manufacturing, 1997, 28, 709-717.	7.6	3
306	Temperature changes in polymer composites during tensile loading. Journal of Materials Science, 1997, 32, 4071-4076.	3.7	6

#	Article	IF	CITATIONS
307	A biaxial thermomechanical disk test for glassy polymers. Experimental Mechanics, 1997, 37, 96-101.	2.0	9
308	Failure mechanisms in polypropylene with glass beads. Polymer Composites, 1997, 18, 1-8.	4.6	57
309	Prediction of failure initiation in polypropylene with glass beads. Polymer Composites, 1997, 18, 9-15.	4.6	25
310	Notch sensitivity and damage mechanisms of glass mat reinforced polypropylene. Polymer Composites, 1997, 18, 40-47.	4.6	19
311	Effects of fiber and interphase on matrix-initiated transverse failure in polymer composites. Composites Science and Technology, 1996, 56, 657-665.	7.8	72
312	Prediction of matrix-initiated transverse failure in polymer composites. Composites Science and Technology, 1996, 56, 1089-1097.	7.8	175
313	Interfacial toughness evaluation from the single-fiber fragmentation test. Composites Science and Technology, 1996, 56, 1105-1109.	7.8	37
314	A criterion for crack initiation in glassy polymers subjected to a composite-like stress state. Composites Science and Technology, 1996, 56, 1291-1301.	7.8	152
315	Effect of voids on failure mechanisms in RTM laminates. Composites Science and Technology, 1995, 53, 241-249.	7.8	130
316	Effects of a composite-like stress state on the fracture of epoxies. Composites Science and Technology, 1995, 53, 27-37.	7.8	104
317	Glass mat reinforced polypropylene. , 1995, , 202-227.		27
318	Transverse Cracking in Laminated Composites. , 1995, , 191-201.		0
319	Effect of atomic oxygen on the mechanical properties of highly graphitized carbon fibers. Carbon, 1994, 32, 641-644.	10.3	14
320	Processing and mechanical properties of orientated preformed glass-mat-reinforced thermoplastics. Composites Science and Technology, 1993, 49, 121-130.	7.8	32
321	The effect of microstructure on the elastic modulus and strength of performed and commercial GMTs. Polymer Composites, 1993, 14, 35-41.	4.6	22
322	Deformation and fracture of glass bead/ CTBN-rubber/epoxy composites. Polymer Engineering and Science, 1993, 33, 100-107.	3.1	37
323	A Model for Prediction of the Transverse Cracking Strain in Cross-Ply Laminates. Journal of Reinforced Plastics and Composites, 1992, 11, 708-728.	3.1	55
324	Specimen Size Effects on Modulus of GMT and Other Inhomogeneous Composites. Journal of Thermoplastic Composite Materials, 1992, 5, 105-114.	4.2	12

#	Article	IF	CITATIONS
325	Transverse Cracking and Local Delamination in [04/90n]s and [90n/04]s Carbon Fiber/Toughened Epoxy Laminates. Journal of Reinforced Plastics and Composites, 1992, 11, 643-660.	3.1	19
326	A Simple Procedure for the Evaluation of Fiber Size Effects on the Properties of Filament Wound Glass Fiber Composites. Journal of Reinforced Plastics and Composites, 1992, 11, 98-102.	3.1	2
327	Deformation and fracture of glass-mat-reinforced polypropylene. Composites Science and Technology, 1992, 43, 269-281.	7.8	47
328	Effect of intralaminar toughness on the transverse cracking strain in cross-ply laminates. Advanced Composite Materials, 1991, 1, 225-234.	1.9	10
329	Rubber-toughening of glass fiber-epoxy filament wound composites. Polymer Engineering and Science, 1991, 31, 1057-1063.	3.1	11
330	Effects of Cooling Rate on the Crystallinity and Mechanical Properties of Thermoplastic Composites. Journal of Reinforced Plastics and Composites, 1987, 6, 2-12.	3.1	75
331	Apparatus for Preparing Thermoplastic Composites. Journal of Reinforced Plastics and Composites, 1987, 6, 89-99.	3.1	7
332	The Effects of Crystallinity on the Mechanical Properties of PEEK Polymer and Graphite Fiber Reinforced PEEK. Journal of Composite Materials, 1987, 21, 1056-1081.	2.4	236
333	Effect of a Chemical Treatment Series on the Structure and Mechanical Properties of Abaca Fiber (<i>Musa textilis</i>). Materials Science Forum, 0, 1015, 64-69.	0.3	3