Xinrong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3915614/publications.pdf

Version: 2024-02-01

232 papers

13,223 citations

63 h-index 29127 104 g-index

240 all docs

240 docs citations

times ranked

240

11180 citing authors

#	Article	IF	CITATIONS
1	Low-Temperature Plasma Probe for Ambient Desorption Ionization. Analytical Chemistry, 2008, 80, 9097-9104.	3.2	638
2	Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Analytical Chemistry, 2011, 83, 1193-1196.	3.2	515
3	Development of a dielectric barrier discharge ion source for ambient mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 1859-1862.	1.2	400
4	Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide. Analytical Chemistry, 2002, 74, 120-124.	3.2	332
5	Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 17893-17898.	1.5	250
6	Application of the Biological Conjugate between Antibody and Colloid Au Nanoparticles as Analyte to Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2002, 74, 96-99.	3.2	240
7	Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF4:Yb,Er Nanoplates. Chemistry of Materials, 2006, 18, 5733-5737.	3.2	228
8	Single Cell Analysis with Probe ESI-Mass Spectrometry: Detection of Metabolites at Cellular and Subcellular Levels. Analytical Chemistry, 2014, 86, 3809-3816.	3.2	194
9	Detection of Multiple Proteins on One Spot by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Application to Immuno- Microarray with Element-Tagged Antibodies. Analytical Chemistry, 2007, 79, 923-929.	3.2	187
10	Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry. Analyst, The, 2009, 134, 176-181.	1.7	186
11	Rapid Screening of Anabolic Steroids in Urine by Reactive Desorption Electrospray Ionization. Analytical Chemistry, 2007, 79, 8327-8332.	3.2	185
12	Assembling of Sulfur Quantum Dots in Fission of Sublimed Sulfur. Journal of the American Chemical Society, 2018, 140, 7878-7884.	6.6	176
13	Recent developments in nanomaterial optical sensors. TrAC - Trends in Analytical Chemistry, 2004, 23, 351-360.	5.8	170
14	Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. Journal of Mass Spectrometry, 2007, 42, 1079-1085.	0.7	169
15	Use of a Solution Cathode Glow Discharge for Cold Vapor Generation of Mercury with Determination by ICP-Atomic Emission Spectrometry. Analytical Chemistry, 2008, 80, 7043-7050.	3.2	165
16	Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF ₄ nanocrystals with multicolor photoluminescence. Journal of Materials Chemistry, 2009, 19, 489-496.	6.7	156
17	A Catalytic Nanomaterial-Based Optical Chemo-Sensor Array. Journal of the American Chemical Society, 2006, 128, 14420-14421.	6.6	147
18	<scp> </scp> -Cysteine-Assisted Synthesis and Optical Properties of Ag ₂ S Nanospheres. Journal of Physical Chemistry C, 2008, 112, 3580-3584.	1.5	143

#	Article	IF	CITATIONS
19	Microplasma Source Based on a Dielectric Barrier Discharge for the Determination of Mercury by Atomic Emission Spectrometry. Analytical Chemistry, 2008, 80, 8622-8627.	3.2	131
20	Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules. Accounts of Chemical Research, 2016, 49, 775-783.	7.6	130
21	Title is missing!. Journal of Analytical Atomic Spectrometry, 2001, 16, 1393-1396.	1.6	128
22	Imaging Mass Spectrometry with a Lowâ€Temperature Plasma Probe for the Analysis of Works of Art. Angewandte Chemie - International Edition, 2010, 49, 4435-4437.	7.2	127
23	Growth and Optical Properties of Wurtzite-Type CdS Nanocrystals. Inorganic Chemistry, 2006, 45, 5103-5108.	1.9	125
24	Rapid Screening of Gold Catalysts by Chemiluminescence-Based Array Imaging. Journal of the American Chemical Society, 2007, 129, 6062-6063.	6.6	125
25	Recent developments and applications of chemiluminescence sensors. Analytica Chimica Acta, 2005, 541, 37-46.	2.6	123
26	Chemiluminescence of sulfite based on auto-oxidation sensitized by rhodamine 6G. Analytica Chimica Acta, 1999, 391, 95-100.	2.6	120
27	Atomization of Hydride with a Low-Temperature, Atmospheric Pressure Dielectric Barrier Discharge and Its Application to Arsenic Speciation with Atomic Absorption Spectrometry. Analytical Chemistry, 2006, 78, 865-872.	3.2	119
28	SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology, 2007, 18, 435707.	1.3	118
29	Growth and photoluminescence properties of PbS nanocubes. Nanotechnology, 2006, 17, 3280-3287.	1.3	117
30	On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor. Sensors and Actuators B: Chemical, 2006, 119, 392-397.	4.0	116
31	Simultaneous Determination of $\hat{l}\pm$ -Fetoprotein and Free \hat{l}^2 -Human Chorionic Gonadotropin by Element-Tagged Immunoassay with Detection by Inductively Coupled Plasma Mass Spectrometry. Clinical Chemistry, 2004, 50, 1214-1221.	1.5	115
32	Shape and Magnetic Properties of Single-Crystalline Hematite (\hat{l} ±-Fe2O3) Nanocrystals. ChemPhysChem, 2006, 7, 1897-1901.	1.0	114
33	Aptamer-Based Plasmonic Sensor Array for Discrimination of Proteins and Cells with the Naked Eye. Analytical Chemistry, 2013, 85, 6571-6574.	3.2	114
34	A survey of arsenic species in chinese seafood. Food and Chemical Toxicology, 2003, 41, 1103-1110.	1.8	109
35	A highly selective chemiluminescent H2S sensor. Sensors and Actuators B: Chemical, 2004, 102, 155-161.	4.0	106
36	Application of Multiwalled Carbon Nanotubes as a Solidâ€Phase Extraction Sorbent for Chlorobenzenes. Analytical Letters, 2004, 37, 3085-3104.	1.0	101

#	Article	lF	CITATIONS
37	Arsenic speciation in Chinese seaweeds using HPLC-ICP-MS and HPLC-ES-MS. Analyst, The, 2002, 127, 634-640.	1.7	100
38	Colorimetric Protein Sensing Using Catalytically Amplified Sensor Arrays. Small, 2012, 8, 3589-3592.	5. 2	100
39	Absolute and Relative Quantification of Multiplex DNA Assays Based on an Elemental Labeling Strategy. Angewandte Chemie - International Edition, 2013, 52, 1466-1471.	7.2	100
40	Synthesis of ZrO2â^'Carbon Nanotube Composites and Their Application as Chemiluminescent Sensor Material for Ethanol. Journal of Physical Chemistry B, 2006, 110, 13410-13414.	1.2	97
41	Development of a chemiluminescence ethanol sensor based on nanosized ZrOZElectronic Supplementary Information available: three graphs showing stability of the sensor with time, the CTL spectrum of acetaldehyde and the CTL cataluminescence response curves of ethanol, butanol and propanol; one table showing CTL intensity of ethanol, butanol and propanol at 195 ŰC. See	1.7	95
42	Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter. Journal of Alloys and Compounds, 2007, 427, 333-340.	2.8	94
43	Nanosized SrCO3-based chemiluminescence sensor for ethanol. Analytica Chimica Acta, 2002, 466, 69-78.	2.6	91
44	Generation and Optical Properties of Monodisperse Wurtzite-Type ZnS Microspheres. Inorganic Chemistry, 2006, 45, 7316-7322.	1.9	89
45	A new strategy for highly sensitive immunoassay based on single-particle mode detection by inductively coupled plasma mass spectrometry. Journal of the American Society for Mass Spectrometry, 2009, 20, 1096-1103.	1.2	89
46	Protein Discrimination Using Fluorescent Gold Nanoparticles on Plasmonic Substrates. Analytical Chemistry, 2012, 84, 4258-4261.	3.2	88
47	Oneâ€Step Homogeneous DNA Assay with Singleâ€Nanoparticle Detection. Angewandte Chemie - International Edition, 2011, 50, 3462-3465.	7.2	86
48	Discrimination and Identification of Flavors with Catalytic Nanomaterial-Based Optical Chemosensor Array. Analytical Chemistry, 2009, 81, 961-966.	3.2	85
49	Identification and Quantitation of Câ•€ Location Isomers of Unsaturated Fatty Acids by Epoxidation Reaction and Tandem Mass Spectrometry. Analytical Chemistry, 2017, 89, 10270-10278.	3.2	82
50	Multiplex DNA Assay Based on Nanoparticle Probes by Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2014, 86, 3541-3547.	3.2	81
51	Safety Evaluation of Organoarsenical Species in EdiblePorphyrafrom the China Sea. Journal of Agricultural and Food Chemistry, 2003, 51, 5176-5182.	2.4	78
52	SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment. Nature Methods, 2021, 18, 1223-1232.	9.0	78
53	Lab-on-graphene: graphene oxide as a triple-channel sensing device for protein discrimination. Chemical Communications, 2013, 49, 81-83.	2.2	77
54	Development of dielectric-barrier-discharge ionization. Analytical and Bioanalytical Chemistry, 2015, 407, 2345-2364.	1.9	75

#	Article	IF	CITATIONS
55	Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy. Analytical Chemistry, 2015, 87, 11242-11248.	3.2	7 5
56	A novel gaseous acetaldehyde sensor utilizing cataluminescence on nanosized BaCO3. Sensors and Actuators B: Chemical, 2004, 99, 30-35.	4.0	74
57	Birch Reduction of Benzene in a Lowâ€√emperature Plasma. Angewandte Chemie - International Edition, 2009, 48, 2017-2019.	7.2	74
58	Rapid screening of active ingredients in drugs by mass spectrometry with low-temperature plasma probe. Analytical and Bioanalytical Chemistry, 2009, 395, 591-599.	1.9	72
59	<scp>I</scp> -Lysine-Assisted Synthesis of ZrO ₂ Nanocrystals and Their Application in Photocatalysis. Journal of Physical Chemistry C, 2009, 113, 18259-18263.	1.5	72
60	Rapid Identification of Bacterial Biofilms and Biofilm Wound Models Using a Multichannel Nanosensor. ACS Nano, 2014, 8, 12014-12019.	7.3	72
61	Combination of Droplet Extraction and Pico-ESI-MS Allows the Identification of Metabolites from Single Cancer Cells. Analytical Chemistry, 2018, 90, 9897-9903.	3.2	68
62	Cataluminescence-Based Array Imaging for High-Throughput Screening of Heterogeneous Catalysts. Analytical Chemistry, 2009, 81, 2092-2097.	3.2	66
63	Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide–ethanol solution. Carbon, 2007, 45, 2589-2596.	5.4	65
64	Desorption Electrospray Tandem MS (DESIâ€MSMS) Analysis of Methyl Centralite and Ethyl Centralite as Gunshot Residues on Skin and Other Surfaces. Journal of Forensic Sciences, 2008, 53, 807-811.	0.9	65
65	Real-time monitoring of chemical reactions by mass spectrometry utilizing a low-temperature plasma probe. Analyst, The, 2009, 134, 1863.	1.7	65
66	Arsenic speciation in moso bamboo shoot $\hat{a}\in$ " A terrestrial plant that contains organoarsenic species. Science of the Total Environment, 2006, 371, 293-303.	3.9	63
67	Electron Transfer Dissociation (ETD) of Peptides Containing Intrachain Disulfide Bonds. Journal of the American Society for Mass Spectrometry, 2012, 23, 310-320.	1.2	63
68	Application of atmospheric pressure dielectric barrier discharge plasma for the determination of Se, Sb and Sn with atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 916-921.	1.5	62
69	Polyol-mediated synthesis of water-soluble LaF3:Yb,Er upconversion fluorescent nanocrystals. Materials Letters, 2007, 61, 1337-1340.	1.3	62
70	A novel near-infrared fluorescent probe for selectively sensing nitroreductase (NTR) in an aqueous medium. Analyst, The, 2013, 138, 1952.	1.7	62
71	Simultaneous Imaging of Three Tumor-Related mRNAs in Living Cells with a DNA Tetrahedron-Based Multicolor Nanoprobe. ACS Sensors, 2017, 2, 735-739.	4.0	62
72	Determination of Se, Pb, and Sb by atomic fluorescence spectrometry using a new flameless, dielectric barrier discharge atomizer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 431-436.	1.5	60

#	Article	IF	CITATIONS
73	Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors. Journal of Alloys and Compounds, 2008, 455, 376-384.	2.8	59
74	Multiplex miRNA assay using lanthanide-tagged probes and the duplex-specific nuclease amplification strategy. Chemical Communications, 2016, 52, 14310-14313.	2.2	59
75	Label-free Mass Cytometry for Unveiling Cellular Metabolic Heterogeneity. Analytical Chemistry, 2019, 91, 9777-9783.	3.2	59
76	Evaluation of a hydride generation-atomic fluorescence system for the determination of arsenic using a dielectric barrier discharge atomizer. Analytica Chimica Acta, 2008, 607, 136-141.	2.6	58
77	Speciation of Six Arsenic Compounds Using High-performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry With Sample Introduction by Thermospray Nebulization. Journal of Analytical Atomic Spectrometry, 1997, 12, 1047-1052.	1.6	57
78	Determination of diphenylamine stabilizer and its nitrated derivatives in smokeless gunpowder using a tandem MS method. Analyst, The, 2001, 126, 480-484.	1.7	57
79	Photoluminescence Lifetime Imaging of Synthesized Proteins in Living Cells Using an Iridium–Alkyne Probe. Angewandte Chemie - International Edition, 2017, 56, 14928-14932.	7.2	56
80	Development of a Plasma-Assisted Cataluminescence System for Benzene, Toluene, Ethylbenzene, and Xylenes Analysis. Analytical Chemistry, 2010, 82, 3457-3459.	3. 2	55
81	Rapid Removal of Matrices from Smallâ€Volume Samples by Stepâ€Voltage Nanoelectrospray. Angewandte Chemie - International Edition, 2013, 52, 11025-11028.	7.2	53
82	Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions. Clinica Chimica Acta, 2008, 387, 139-144.	0.5	50
83	A Highly Sensitive Chemiluminescent Probe for Detecting Nitroreductase and Imaging in Living Animals. Analytical Chemistry, 2019, 91, 1384-1390.	3.2	50
84	Development of a Detector for Liquid Chromatography Based on Aerosol Chemiluminescence on Porous Alumina. Analytical Chemistry, 2005, 77, 1518-1525.	3. 2	49
85	Rapid screening of clenbuterol in urine samples by desorption electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1882-1888.	0.7	49
86	Dual-Channel Sensing of Volatile Organic Compounds with Semiconducting Nanoparticles. Analytical Chemistry, 2010, 82, 66-68.	3.2	48
87	Development of a luminol-based chemiluminescence flow-injection method for the determination of dichlorvos pesticide. Talanta, 2001, 54, 1185-1193.	2.9	47
88	Versatile Platform Employing Desorption Electrospray Ionization Mass Spectrometry for High-Throughput Analysis. Analytical Chemistry, 2008, 80, 6131-6136.	3.2	47
89	Speciation of toxicologically important arsenic species in human serum by liquid chromatography–hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1996, 11, 1075-1079.	1.6	46
90	A nanosized YO-based catalytic chemiluminescent sensor for trimethylamine. Talanta, 2005, 65, 913-917.	2.9	46

#	Article	IF	Citations
91	Chemiluminescence flow-injection determination of furosemide based on a rhodamine 6G sensitized cerium(IV) method. Analytica Chimica Acta, 1999, 396, 273-277.	2.6	45
92	An instrumentation perspective on reaction monitoring by ambient mass spectrometry. TrAC - Trends in Analytical Chemistry, 2012, 35, 50-66.	5.8	45
93	Vacuum Ultraviolet Laser Desorption/Ionization Mass Spectrometry Imaging of Single Cells with Submicron Craters. Analytical Chemistry, 2018, 90, 10009-10015.	3.2	45
94	An energy-transfer cataluminescence reaction on nanosized catalysts and its application to chemical sensors. Analytica Chimica Acta, 2005, 535, 145-152.	2.6	42
95	High yield accelerated reactions in nonvolatile microthin films: chemical derivatization for analysis of single-cell intracellular fluid. Chemical Science, 2018, 9, 7779-7786.	3.7	42
96	ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum. Journal of Analytical Atomic Spectrometry, 2002, 17, 1304-1307.	1.6	41
97	Rapid Analysis of Unsaturated Fatty Acids on Paper-Based Analytical Devices via Online Epoxidation and Ambient Mass Spectrometry. Analytical Chemistry, 2018, 90, 2070-2078.	3.2	41
98	A Novel Chemiluminescent Probe Based on 1,2-Dioxetane Scaffold for Imaging Cysteine in Living Mice. ACS Sensors, 2019, 4, 87-92.	4.0	41
99	Development of an Aerosol Chemiluminescent Detector Coupled to Capillary Electrophoresis for Saccharide Analysis. Analytical Chemistry, 2005, 77, 7356-7365.	3.2	40
100	A novel gaseous ester sensor utilizing chemiluminescence on nano-sized SiO2. Sensors and Actuators B: Chemical, 2007, 126, 461-466.	4.0	40
101	Facile preparation of paper substrates coated with different materials and their applications in paper spray mass spectrometry. Analytical Methods, 2015, 7, 5381-5386.	1.3	40
102	Chemiluminescence Determination of Tiopronin by Flow Injection Analysis Based on Cerium(IV) Oxidation Sensitized by Quinine. Analyst, The, 1997, 122, 103-106.	1.7	39
103	Speciation of antimony(III) and antimony(V) species by using high-performance liquid chromatography coupled to hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1998, 13, 205-207.	1.6	39
104	Flow-Injection Chemiluminescence Determination of Fluoroquinolones. Analytical Letters, 2000, 33, 1117-1129.	1.0	39
105	Determination of NH3 gas by combination of nanosized LaCoO3 converter with chemiluminescence detector. Talanta, 2003, 61, 157-164.	2.9	38
106	Low temperature hydrogen plasma assisted chemical vapor generation for Atomic Fluorescence Spectrometry. Talanta, 2014, 126, 1-7.	2.9	38
107	A ratiometric strategy to detect hydrogen sulfide with a gold nanoclusters based fluorescent probe. Talanta, 2016, 154, 190-196.	2.9	38
108	Determination of bismuth in solid samples by hydride generation atomic fluorescence spectrometry with a dielectric barrier discharge atomizer. Talanta, 2009, 80, 139-142.	2.9	37

7

#	Article	IF	Citations
109	Sensitive sandwich immunoassay based on single particle mode inductively coupled plasma mass spectrometry detection. Talanta, 2010, 83, 48-54.	2.9	37
110	Depth Profiling of Nanometer Coatings by Low Temperature Plasma Probe Combined with Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2010, 82, 5872-5877.	3.2	37
111	Multicolor Imaging of Cancer Cells with Fluorophore-Tagged Aptamers for Single Cell Typing. Analytical Chemistry, 2014, 86, 8261-8266.	3.2	37
112	Determination of ofloxacin using a chemiluminescence flow-injection method. Analytica Chimica Acta, 2000, 416, 227-230.	2.6	36
113	<scp> </scp> -Cysteine-Assisted Self-Assembly of Complex PbS Structures. Crystal Growth and Design, 2008, 8, 3935-3940.	1.4	36
114	Chemical Visualization of Sweat Pores in Fingerprints Using GO-Enhanced TOF-SIMS. Analytical Chemistry, 2017, 89, 8372-8376.	3.2	36
115	A Cell-Surface-Specific Ratiometric Fluorescent Probe for Extracellular pH Sensing with Solid-State Fluorophore. ACS Sensors, 2018, 3, 2278-2285.	4.0	36
116	Chemical-Modified Nucleotide-Based Elemental Tags for High-Sensitive Immunoassay. Analytical Chemistry, 2019, 91, 5980-5986.	3.2	36
117	Simultaneous determination of arsenic and antimony by hydride generation atomic fluorescence spectrometry with dielectric barrier discharge atomizer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 1056-1060.	1.5	35
118	Ambient mass spectrometry. Analyst, The, 2010, 135, 659.	1.7	34
119	Coupling a solid phase microextraction (SPME) probe with ambient MS for rapid enrichment and detection of phosphopeptides in biological samples. Analyst, The, 2015, 140, 2599-2602.	1.7	34
120	Quantitation of Glucose-phosphate in Single Cells by Microwell-Based Nanoliter Droplet Microextraction and Mass Spectrometry. Analytical Chemistry, 2019, 91, 5613-5620.	3.2	34
121	Shape controlled synthesis of superhydrophobic zinc coordination polymers particles and their calcination to superhydrophobic ZnO. Journal of Materials Chemistry, 2011, 21, 8633.	6.7	33
122	Chemiluminescence analysis of menadione sodium bisulfite and analgin in pharmaceutical preparations and biological fluids. Journal of Pharmaceutical and Biomedical Analysis, 1999, 21, 817-825.	1.4	32
123	Biomineralization and Superhydrophobicity of BaCO ₃ Complex Nanostructures. Inorganic Chemistry, 2009, 48, 10326-10329.	1.9	32
124	Development of a graphite low-temperature plasma source with dual-mode in-source fragmentation for ambient mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 742-748.	0.7	32
125	A combinatorial immunoassay for multiple biomarkers <i>via</i> a stable isotope tagging strategy. Chemical Communications, 2017, 53, 13075-13078.	2.2	32
126	In Vivo Nanoelectrospray for the Localization of Bioactive Molecules in Plants by Mass Spectrometry. Analytical Chemistry, 2012, 84, 3058-3062.	3.2	31

#	Article	IF	CITATIONS
127	Desalting by Crystallization: Detection of Attomole Biomolecules in Picoliter Buffers by Mass Spectrometry. Analytical Chemistry, 2015, 87, 9745-9751.	3.2	31
128	Cell-Penetrating Peptide Spirolactam Derivative as a Reversible Fluorescent pH Probe for Live Cell Imaging. Analytical Chemistry, 2017, 89, 1238-1243.	3.2	31
129	A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners. Analytical and Bioanalytical Chemistry, 2012, 402, 389-395.	1.9	30
130	Observation of Replacement of Carbon in Benzene with Nitrogen in a Low-Temperature Plasma. Scientific Reports, 2013, 3, 3481.	1.6	30
131	Study of arsenic–protein binding in serum of patients on continuous ambulatory peritoneal dialysis. Clinical Chemistry, 1998, 44, 141-147.	1.5	29
132	Simultaneous quantitative determination of norgestrel and progesterone in human serum by high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization. Analyst, The, 2000, 125, 2201-2205.	1.7	29
133	Determination of ethamsylate in pharmaceutical preparations based on an auto-oxidation chemiluminescence reaction. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30, 473-478.	1.4	29
134	A research on determination of explosive gases utilizing cataluminescence sensor array. Luminescence, 2005, 20, 243-250.	1.5	29
135	Structureâ€"function roles of four cysteine residues in the human arsenic (+3 oxidation state) methyltransferase (hAS3MT) by site-directed mutagenesis. Chemico-Biological Interactions, 2009, 179, 321-328.	1.7	29
136	Homogeneous multiplexed digital detection of microRNA with ligation-rolling circle amplification. Chemical Communications, 2020, 56, 5409-5412.	2.2	29
137	Chemical speciation of arsenic in serum of uraemic patientsâ€. Analyst, The, 1998, 123, 13-17.	1.7	27
138	Development of a sensitive gas sensor by trapping the analytes on nanomaterials and in situ cataluminescence detection. Sensors and Actuators B: Chemical, 2009, 141, 168-173.	4.0	27
139	Functional and structural evaluation of cysteine residues in the human arsenic (+3 oxidation state) methyltransferase (hAS3MT). Biochimie, 2011, 93, 369-375.	1.3	26
140	<i>In Situ</i> lon-Transmission Mass Spectrometry for Paper-Based Analytical Devices. Analytical Chemistry, 2016, 88, 10805-10810.	3.2	26
141	Single nanoporous gold nanowire as a tunable one-dimensional platform for plasmon-enhanced fluorescence. Chemical Communications, 2016, 52, 1808-1811.	2.2	26
142	Recognition of organic compounds in aqueous solutions by chemiluminescence on an array of catalytic nanoparticles. Analyst, The, 2009, 134, 2441.	1.7	25
143	New insights into the mechanism of arsenite methylation with the recombinant human arsenic (+3) methyltransferase (hAS3MT). Biochimie, 2010, 92, 1397-1406.	1.3	25
144	An iridium complex-based probe for photoluminescence lifetime imaging of human carboxylesterase 2 in living cells. Chemical Communications, 2018, 54, 9027-9030.	2.2	24

#	Article	IF	CITATIONS
145	Effects of selenium on the structure and function of recombinant human S-adenosyl-l-methionine dependent arsenic (+3 oxidation state) methyltransferase in E. coli. Journal of Biological Inorganic Chemistry, 2009, 14, 485-496.	1.1	23
146	Detection of N,N′-diphenyl-N,N′-dimethylurea (methyl centralite) in gunshot residues using MS-MS method. Analyst, The, 1999, 124, 1563-1567.	1.7	22
147	Cataluminescenceâ€based sensors: principle, instrument and application. Luminescence, 2015, 30, 919-939.	1.5	21
148	Inorganic arsenic modulates the expression of selenoproteins in mouse embryonic stem cell. Toxicology Letters, 2009, 187, 69-76.	0.4	20
149	Low-temperature plasma ionization source for the online detection of indoor volatile organic compounds. Talanta, 2011, 85, 2458-2462.	2.9	20
150	A cell-penetrating ratiometric probe for simultaneous measurement of lysosomal and cytosolic pH change. Talanta, 2018, 178, 355-361.	2.9	20
151	Mannose Promotes Metabolic Discrimination of Osteosarcoma Cells at Single-Cell Level by Mass Spectrometry. Analytical Chemistry, 2020, 92, 2690-2696.	3.2	20
152	Speciation of Arsenic in Serum, Urine, and Dialysate of Patients on Continuous Ambulatory Peritoneal Dialysis. Clinical Chemistry, 1997, 43, 406-408.	1.5	19
153	Microdialysis with on-line chemiluminescence detection for the study of nitric oxide release in rat brain following traumatic injury. Analytica Chimica Acta, 2001, 428, 173-181.	2.6	19
154	Pinpoint the Positions of Single Nucleotide Polymorphisms by a Nanocluster Dimer. Analytical Chemistry, 2017, 89, 2622-2627.	3.2	19
155	A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation. Review of Scientific Instruments, 2017, 88, 114102.	0.6	19
156	Cell-penetrating peptide-modified quantum dots as a ratiometric nanobiosensor for the simultaneous sensing and imaging of lysosomes and extracellular pH. Chemical Communications, 2020, 56, 145-148.	2.2	19
157	Speciation measurements by HPLC-HGAAS of dimethylarsinic acid and arsenobetaine in three candidate lyophilized urine reference materials. Analyst, The, 1998, 123, 2883-2886.	1.7	18
158	Cerium (IV)-Based Chemiluminescence Analysis of Analgin. Analytical Letters, 1999, 32, 933-943.	1.0	18
159	Flow injection analysis of oxymetazoline hydrochloride with inhibited chemiluminescent detection. Analytica Chimica Acta, 2004, 516, 245-249.	2.6	18
160	CE immunoassay with enhanced chemiluminescence detection of erythropoietin using silica dioxide nanoparticles as pseudostationary phase. Electrophoresis, 2009, 30, 3092-3098.	1.3	18
161	Development of an ICP-MS immunoassay for the detection of anti-erythropoietin antibodies. Talanta, 2009, 78, 869-873.	2.9	18
162	In situ arsenic speciation on solid surfaces by desorption electrospray ionization tandem mass spectrometry. Analyst, The, 2010, 135, 1268.	1.7	18

#	Article	IF	Citations
163	A thermochemiluminescence array for recognition of protein subtypes and their denatured shapes. Analyst, The, 2011, 136, 3643.	1.7	18
164	Plasma-based ambient mass spectrometry: a step forward to practical applications. Analytical Methods, 2017, 9, 4908-4923.	1.3	18
165	Gas-Phase Fragmentation of [M + nH + OH] ^{n•+} Ions Formed from Peptides Containing Intra-Molecular Disulfide Bonds. Journal of the American Society for Mass Spectrometry, 2011, 22, 922-30.	1.2	17
166	Graphene Oxide as a Novel Evenly Continuous Phase Matrix for TOF-SIMS. Journal of the American Society for Mass Spectrometry, 2017, 28, 399-408.	1.2	17
167	Separating and Profiling Phosphatidylcholines and Triglycerides from Single Cellular Lipid Droplet by In-Tip Solvent Microextraction Mass Spectrometry. Analytical Chemistry, 2019, 91, 4466-4471.	3.2	17
168	Dynamic metabolic change of cancer cells induced by natural killer cells at the single-cell level studied by label-free mass cytometry. Chemical Science, 2022, 13, 1641-1647.	3.7	17
169	A Sensitive Chemiluminescence Flow System for the Determination of Sulfite. Analytical Letters, 1999, 32, 1211-1224.	1.0	16
170	Destructive adsorption of carbon tetrachloride on nanometer titanium dioxide. Physical Chemistry Chemical Physics, 2004, 6, 985.	1.3	16
171	Poly(ethylene glycol)-Assisted Two-Dimensional Self-Assembly of Zinc Sulfide Microspheres. Inorganic Chemistry, 2006, 45, 4586-4588.	1.9	16
172	Controlling Charge States of Peptides through Inductive Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2011, 83, 8863-8866.	3.2	16
173	Detecting Low-Abundance Molecules at Single-Cell Level by Repeated Ion Accumulation in Ion Trap Mass Spectrometer. Analytical Chemistry, 2017, 89, 2275-2281.	3.2	16
174	Rapid screening of copper intermediates in Cu(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition using a modified ICP-MS/MS platform. Chemical Communications, 2016, 52, 10501-10504.	2.2	15
175	Simultaneous imaging of newly synthesized proteins and lipids in single cell by TOF-SIMS. International Journal of Mass Spectrometry, 2017, 421, 238-244.	0.7	15
176	Mass spectrometry imaging of intact cholesterol in a mouse esophagus tissue section and mouse zygotes using VUV laser desorption/ionization method. International Journal of Mass Spectrometry, 2018, 432, 9-13.	0.7	15
177	Discriminating Leukemia Cellular Heterogeneity and Screening Metabolite Biomarker Candidates using Label-Free Mass Cytometry. Analytical Chemistry, 2021, 93, 10282-10291.	3.2	15
178	Site-Specific Scissors Based on Myeloperoxidase for Phosphorothioate DNA. Journal of the American Chemical Society, 2021, 143, 12361-12368.	6.6	14
179	Antireflection Surfaces for Biological Analysis Using Laser Desorption Ionization Mass Spectrometry. Research, 2018, 2018, 5439729.	2.8	14
180	Catalytic chemiluminescence properties of boehmite "nanococoons― Applied Physics Letters, 2007, 90, 193105.	1.5	13

#	Article	IF	Citations
181	Hydrogen Sulfide Detection Based on Reflection: From a Poison Test Approach of Ancient China to Single-Cell Accurate Localization. Analytical Chemistry, 2014, 86, 7734-7739.	3.2	13
182	Simultaneous competitive and sandwich formats multiplexed immunoassays based on ICP-MS detection. Talanta, 2018, 185, 237-242.	2.9	13
183	Tuning the p <i>K</i> _a of Carboxyfluorescein with Arginine-Rich Cell-Penetrating Peptides for Intracellular pH Imaging. Analytical Chemistry, 2019, 91, 9168-9173.	3.2	13
184	Native State Single-Cell Printing System and Analysis for Matrix Effects. Analytical Chemistry, 2019, 91, 8115-8122.	3.2	12
185	Intact living-cell electrolaunching ionization mass spectrometry for single-cell metabolomics. Chemical Science, 2022, 13, 8065-8073.	3.7	12
186	Chemiluminescence flow injection analysis of 1,3-dichloro-5,5-dimethylhydantoin in swimming pool water. Talanta, 2002, 57, 993-998.	2.9	11
187	A simple and fast detection technique for arsenic speciation based on highâ€efficiency photooxidation and gasâ€phase chemiluminescence detection. Luminescence, 2009, 24, 290-294.	1.5	11
188	Dynamic Monitoring of Phase-Separated Biomolecular Condensates by Photoluminescence Lifetime Imaging. Analytical Chemistry, 2021, 93, 2988-2995.	3.2	11
189	The Utilization of MS-MS Method in Detection of GSRs. Journal of Forensic Sciences, 2001, 46, 495-501.	0.9	11
190	Photoluminescence Lifetime Imaging of Synthesized Proteins in Living Cells Using an Iridium–Alkyne Probe. Angewandte Chemie, 2017, 129, 15124-15128.	1.6	10
191	A fluorescent nanoprobe based on cell-penetrating peptides and quantum dots for ratiometric monitoring of pH fluctuation in lysosomes. Talanta, 2021, 227, 122208.	2.9	10
192	Gas-phase fragmentation of host–guest complexes between β-cyclodextrin and small molecules. Talanta, 2012, 93, 252-256.	2.9	9
193	Nano Endoscopy with Plasmon-Enhanced Fluorescence for Sensitive Sensing Inside Ultrasmall Volume Samples. Analytical Chemistry, 2017, 89, 1045-1048.	3.2	9
194	Gold nanoparticles-enhanced ion-transmission mass spectrometry for highly sensitive detection of chemical warfare agent simulants. Talanta, 2018, 190, 403-409.	2.9	9
195	Chemiluminescence Determination of Tiopronin by Flow Injection Analysis Based on Cerium(IV) Oxidation Sensitized by Quinine. Biomedical Chromatography, 1997, 11, 117-118.	0.8	8
196	Rapid analysis of chemical warfare agents by metal needle-enhanced low-temperature plasma mass spectrometry. Analytical Methods, 2019, 11, 3721-3726.	1.3	8
197	Switching Carbon Nanodots from Single Emission to Dual Emission by One-Step Electrochemical Tailoring in Alkaline Alcohols: Implications for Sensing and Bioimaging. ACS Applied Nano Materials, 2019, 2, 2776-2784.	2.4	8
198	Development of a cataluminescence-based method for rapid screening of de-NOx catalysts. Analytical Methods, 2012, 4, 2218.	1.3	7

#	Article	IF	CITATIONS
199	Absolute and Relative Quantification of Multiplex DNA Assays Based on an Elemental Labeling Strategy. Angewandte Chemie, 2013, 125, 1506-1511.	1.6	7
200	Teaching analytical chemistry in China: past, present, and future perspectives. Analytical and Bioanalytical Chemistry, 2014, 406, 4005-4008.	1.9	7
201	ICP-MS/MS as a tool to study abiotic methylation of inorganic mercury reacting with VOCs. Journal of Analytical Atomic Spectrometry, 2015, 30, 1997-2002.	1.6	7
202	Simultaneous detection of three gynecological tumor biomarkers in clinical serum samples using an ICP-MS-based magnetic immunoassay. Analytical Methods, 2017, 9, 2546-2552.	1.3	7
203	Ratiometric quantification of \hat{l}^2 2-microglobulin antigen in human serum based on elemental labeling strategy. Talanta, 2018, 189, 249-253.	2.9	7
204	Characterize Collective Lysosome Heterogeneous Dynamics in Live Cell with a Space- and Time-Resolved Method. Analytical Chemistry, 2018, 90, 9138-9147.	3.2	7
205	Rapid quantitative analysis of hormones in serum by multilayer paper spray MS: Free MS from HPLC. Talanta, 2022, 237, 122900.	2.9	7
206	Single Cell Mass Spectrometry With a Robotic Micromanipulation System for Cell Metabolite Analysis. IEEE Transactions on Biomedical Engineering, 2022, 69, 325-333.	2.5	7
207	In situ monitoring of catalytic reaction on single nanoporous gold nanowire with tuneable SERS and catalytic activity. Talanta, 2020, 218, 121181.	2.9	7
208	Analyte migration electrospray ionization for rapid analysis of complex samples with small volume using mass spectrometry. Analyst, The, 2014, 139, 5678-5681.	1.7	6
209	DNA methylation as a potential diagnosis indicator for rapid discrimination of rare cancer cells and normal cells. Scientific Reports, 2015, 5, 11882.	1.6	6
210	A rapid screening platform for catalyst discovery in azide–alkyne cycloaddition by ICP-MS/MS. Talanta, 2017, 165, 39-43.	2.9	6
211	Rapid screening of gaseous catalysts in methane activation using ICP-QQQ-MS. Journal of Analytical Atomic Spectrometry, 2018, 33, 563-568.	1.6	6
212	Lipid Alterations during Zebrafish Embryogenesis Revealed by Dynamic Mass Spectrometry Profiling with C=C Specificity. Journal of the American Society for Mass Spectrometry, 2019, 30, 2646-2654.	1.2	6
213	Evaluation of an Element-Tagged Duplex Immunoassay Coupled with Inductively Coupled Plasma Mass Spectrometry Detection: A Further Study for the Application of the New Assay in Clinical Laboratory. Molecules, 2020, 25, 5370.	1.7	6
214	The screening of intermediates in a ruthenium and iridium ion-catalyzed gas-phase reaction of ethanol converting to butanol by ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 2020, 35, 804-809.	1.6	6
215	Development and evaluation of an element-tagged immunoassay coupled with inductively coupled plasma mass spectrometry detection: can we apply the new assay in the clinical laboratory?. Clinical Chemistry and Laboratory Medicine, 2020, 58, 873-882.	1.4	5
216	Simultaneous multicolour imaging using quantum dot structured illumination microscopy. Journal of Microscopy, 2020, 277, 32-41.	0.8	5

#	Article	IF	Citations
217	Detection of intermediates for diatomic [TaO]+ catalyzed gas-phase reaction of methane coupling to ethane and ethylene by ICP-MS/MS. Microchemical Journal, 2021, 161, 105762.	2.3	5
218	Combination of Structured Illumination Microscopy with Hyperspectral Imaging for Cell Analysis. Analytical Chemistry, 2021, 93, 10056-10064.	3.2	5
219	A novel chemiluminescence method for the determination of orciprenaline based on ferricyanide-rhodamine 6G. Luminescence, 2005, 20, 298-302.	1.5	4
220	Chemiluminescent Determination of Tiopronin and its Metabolite, 2-Mercaptopropionic Acid, in Urine by HPLC Coupled with a Flow Injection Set-up., 1997, 11, 115-116.		3
221	Development of a chemiluminescent imaging assay for the detection of antiâ€erythropoietin antibody in human sera. Luminescence, 2009, 24, 55-61.	1.5	3
222	Electroâ€optical Gas Sensor Based on a Planar Lightâ€Emitting Electrochemical Cell Microarray. Small, 2010, 6, 1897-1899.	5.2	3
223	Spatiotemporal fluorescence imaging of newly synthesized proteins in normal and cancerous cells with anticarcinogen modulation. Talanta, 2017, 162, 641-647.	2.9	3
224	Imaging specific newly synthesized proteins within cells by fluorescence resonance energy transfer. Chemical Science, 2017, 8, 748-754.	3.7	3
225	Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 1266-1273.	1.2	2
226	A multiplex bacterial assay using an element-labeled strategy for 16S rRNA detection. Analyst, The, 2020, 145, 6821-6825.	1.7	2
227	Intermediates detection in the conversion of ethanol to butanol catalyzed by zirconium, cerium, titanium monoxide cations by inductively coupled plasma tandem mass spectrometry. Microchemical Journal, 2020, 156, 104926.	2.3	2
228	Reveal heterogeneous motion states in single nanoparticle trajectory using its own history. Science China Chemistry, 2021, 64, 302-312.	4.2	2
229	Rapid Disulfide Mapping in Peptides and Proteins by <i>meta</i> -Chloroperoxybenzoic Acid (<i>m</i> CPBA) Oxidation and Tandem Mass Spectrometry. Analytical Chemistry, 2021, 93, 14618-14625.	3.2	2
230	Development of Pico-ESI-MS for Single-Cell Metabolomics Analysis. Methods in Molecular Biology, 2020, 2064, 31-59.	0.4	1
231	Metal organic framework superlenses. Journal of Materials Chemistry C, 2017, 5, 10485-10489.	2.7	0
232	The simultaneous quantitative detection of multiple hormones based on PS-MS: affinity capture by a single antibody. Analyst, The, 2022, , .	1.7	0