Martine van der Ploeg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3914859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rivers running green: water hyacinth invasion monitored from space. Environmental Research Letters, 2022, 17, 044069.	5.2	10
2	Soil microbiota as game-changers in restoration of degraded lands. Science, 2022, 375, abe0725.	12.6	216
3	Effect on Soil Properties and Crop Yields to Long-Term Application of Superabsorbent Polymer and Manure. Frontiers in Environmental Science, 2022, 10, .	3.3	6
4	Assessing the Effects of Anthropogenic Land Use on Soil Infiltration Rate in a Tropical West African Watershed (Ouriyori, Benin). Applied and Environmental Soil Science, 2022, 2022, 1-11.	1.7	1
5	Inferring Aquitard Hydraulic Conductivity Using Transient Temperatureâ€Depth Profiles Impacted by Ground Surface Warming. Water Resources Research, 2022, 58, .	4.2	2
6	Effects of long-term super absorbent polymer and organic manure on soil structure and organic carbon distribution in different soil layers. Soil and Tillage Research, 2021, 206, 104781.	5.6	18
7	Susceptibility to Gully Erosion: Applying Random Forest (RF) and Frequency Ratio (FR) Approaches to a Small Catchment in Ethiopia. Water (Switzerland), 2021, 13, 216.	2.7	31
8	Root zone soil moisture estimation with Random Forest. Journal of Hydrology, 2021, 593, 125840.	5.4	86
9	Impact of longâ€ŧerm subâ€soiling tillage on soil porosity and soil physical properties in the soil profile. Land Degradation and Development, 2021, 32, 2892-2905.	3.9	23
10	Inferring Permafrost Active Layer Thermal Properties From Numerical Model Optimization. Geophysical Research Letters, 2021, 48, e2021GL093306.	4.0	7
11	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.	5.2	68
12	On the complexity of model complexity: Viewpoints across the geosciences. Catena, 2020, 186, 104261.	5.0	15
13	A multi-model approach for analysing water balance and water-related ecosystem services in the Ouriyori catchment (Benin). Hydrological Sciences Journal, 2020, 65, 2453-2465.	2.6	2
14	Effects of microplastics and earthworm burrows on soil macropore water flow within a laboratory soil column setup. Vadose Zone Journal, 2020, 19, e20059.	2.2	14
15	No effect of pyrolysis temperature and feedstock type on hydraulic properties of biochar and amended sandy soil. Geoderma, 2020, 364, 114209.	5.1	25
16	Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma, 2020, 374, 114453.	5.1	70
17	Anatomy of the 2018Âagricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices. Hydrology and Earth System Sciences, 2020, 24, 6021-6031.	4.9	28
18	Causes and Controlling Factors of Valley Bottom Gullies. Land, 2019, 8, 141.	2.9	35

Martine van der Ploeg

#	Article	IF	CITATIONS
19	Monitoring agricultural field trafficability using Sentinel-1. Agricultural Water Management, 2019, 224, 105698.	5.6	12
20	Usefulness of an opportunistic data analysis approach to evaluate if environmental regulations aim at relevant applications. Geoderma, 2019, 351, 261-269.	5.1	6
21	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	2.6	474
22	Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Global Change Biology, 2019, 25, 1895-1904.	9.5	60
23	Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry, 2019, 16, 31.	1.5	116
24	Modeling Digs Beyond Soil Properties and Processes. Eos, 2019, 100, .	0.1	0
25	Biophysical landscape interactions: Bridging disciplines and scale with connectivity. Land Degradation and Development, 2018, 29, 1167-1175.	3.9	14
26	Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran. Journal of Hydrology and Hydromechanics, 2018, 66, 97-106.	2.0	14
27	Tracking the Transport of Silver Nanoparticles in Soil: a Saturated Column Experiment. Water, Air, and Soil Pollution, 2018, 229, 334.	2.4	25
28	Incorporating soil ecosystem services into urban planning: status, challenges and opportunities. Landscape Ecology, 2018, 33, 1087-1102.	4.2	33
29	Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values. Hydrology and Earth System Sciences, 2018, 22, 2255-2267.	4.9	13
30	The Raam regional soil moisture monitoring network in the Netherlands. Earth System Science Data, 2018, 10, 61-79.	9.9	23
31	Comparison of Soil Water Potential Sensors: A Drying Experiment. Vadose Zone Journal, 2017, 16, 1-8.	2.2	14
32	Tropical Montane Cloud Forests in the Orinoco river basin: The role of soil organic layers in water storage and release. Geoderma, 2017, 298, 14-26.	5.1	21
33	Variation in hydrologic connectivity as a result of microtopography explained by discharge to catchment size relationship. Hydrological Processes, 2017, 31, 2683-2699.	2.6	13
34	Silver nanoparticles in soil: Aqueous extraction combined with single-particle ICP-MS for detection and characterization. Environmental Nanotechnology, Monitoring and Management, 2017, 7, 24-33.	2.9	31
35	Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 2017, 7, 14071.	3.3	523
36	Interpreting Repeated Temperatureâ€Depth Profiles for Groundwater Flow. Water Resources Research, 2017, 53, 8639-8647.	4.2	21

#	Article	IF	CITATIONS
37	Forecasting soil temperature based on surface air temperature using a wavelet artificial neural network. Meteorological Applications, 2017, 24, 603-611.	2.1	25
38	Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics, 2017, 55, 1199-1256.	23.0	316
39	Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 2017, 220, 523-531.	7.5	479
40	Modeling Agricultural Suitability Along Soil Transects Under Current Conditions and Improved Scenario of Soil Factors. , 2017, , 193-219.		16
41	Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response. Hydrology, 2016, 3, 39.	3.0	2
42	Microplastics in the Terrestrial Ecosystem: Implications for <i>Lumbricus terrestris</i> (Oligochaeta,) Tj ETQq0 () 0 [gBT /C)verlock 10 Tr 844
43	Groundwater and Global Palaeoclimate Signals (G@GPS). Episodes, 2016, 39, 556-567.	1.2	5
44	Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 2015, 3, 57-65.	6.5	714
45	Short-term rainfall forecasts as a soft adaptation to climate change in irrigation management in North-East India. Agricultural Water Management, 2013, 127, 97-106.	5.6	44
46	Going Back to the Roots: The Need to Link Plant Functional Biology with Vadose Zone Processes. Procedia Environmental Sciences, 2013, 19, 379-383.	1.4	4
47	Transport and degradation of propylene glycol in the vadose zone: model development and sensitivity analysis. Environmental Science and Pollution Research, 2013, 21, 9054-66.	5.3	8
48	Satelliteâ€Based Radar Interferometry to Estimate Largeâ€Scale Soil Water Depletion from Clay Shrinkage: Possibilities and Limitations. Vadose Zone Journal, 2013, 12, 1-13.	2.2	13
49	Water storage change estimation from in situ shrinkage measurements of clay soils. Hydrology and Earth System Sciences, 2013, 17, 1933-1949.	4.9	25
50	Spatial distribution of solute leaching with snowmelt and irrigation: measurements and simulations. Hydrology and Earth System Sciences, 2013, 17, 1547-1560.	4.9	3
51	Interweaving Monitoring Activities and Model Development towards Enhancing Knowledge of the Soil-Plant-Atmosphere Continuum. Vadose Zone Journal, 2012, 11, vzj2012.0122.	2.2	5
52	Subpermafrost groundwater systems: Dealing with virtual reality while having virtually no data. Journal of Hydrology, 2012, 475, 42-52.	5.4	9
53	Semi-arid groundwater systems and their response to global change. Quaternary International, 2012, 279-280, 513.	1.5	0
54	Microtopography as a Driving Mechanism for Ecohydrological Processes in Shallow Groundwater Systems. Vadose Zone Journal, 2012, 11, vzj2011.0098.	2.2	30

#	Article	IF	CITATIONS
55	Quantifying heterogeneous transport of a tracer and a degradable contaminant in the field, with snowmelt and irrigation. Hydrology and Earth System Sciences, 2012, 16, 2871-2882.	4.9	14
56	Sensitivity to long-term climate change of subpermafrost groundwater systems in Svalbard. Quaternary Research, 2010, 73, 393-402.	1.7	41
57	Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils. Hydrology and Earth System Sciences, 2010, 14, 1787-1799.	4.9	24
58	Measuring very negative water potentials with polymer tensiometers: principles, performance and applications. Biologia (Poland), 2009, 64, 438-442.	1.5	12
59	Matric Potential Measurements by Polymer Tensiometers in Cropped Lysimeters under Waterâ€Stressed Conditions. Vadose Zone Journal, 2008, 7, 1048-1054.	2.2	26
60	New Polymer Tensiometers: Measuring Matric Pressures Down to the Wilting Point. Vadose Zone Journal, 2007, 6, 196-202.	2.2	45