
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3914593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TAR30, a homolog of the canonical plant TTTAGGG telomeric repeat, is enriched in the proximal chromosome regions of peanut (Arachis hypogaea L.). Chromosome Research, 2022, 30, 77-90.	2.2	4
2	Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nature Plants, 2022, 8, 233-244.	9.3	26
3	Fast neutron mutagenesis in soybean enriches for small indels and creates frameshift mutations. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4
4	Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology, 2021, 257, 153351.	3.5	90
5	Ancient genomes reveal early Andean farmers selected common beans while preserving diversity. Nature Plants, 2021, 7, 123-128.	9.3	29
6	An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Research, 2021, 6, 42.	1.8	97
7	Validation of resistance to rootâ€knot nematode incorporated in peanut from the wild relative <i>Arachis stenosperma</i> . Agronomy Journal, 2021, 113, 2293-2302.	1.8	7
8	Registration of GAâ€BatSten1 and GAâ€MagSten1, two induced allotetraploids derived from peanut wild relatives with superior resistance to leaf spots, rust, and rootâ€knot nematode. Journal of Plant Registrations, 2021, 15, 372-378.	0.5	9
9	Advancing crop genomics from lab to field. Nature Genetics, 2021, 53, 595-601.	21.4	47
10	An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Research, 2021, 6, 42.	1.8	51
11	Registration of three peanut allotetraploid interspecific hybrids resistant to late leaf spot disease and tomato spotted wilt. Journal of Plant Registrations, 2021, 15, 562-572.	0.5	7
12	Genetic control and allele variation among soybean maturity groups 000 through IX. Plant Genome, 2021, 14, e20146.	2.8	4
13	Legacy genetics of <i>Arachis cardenasii</i> in the peanut crop shows the profound benefits of international seed exchange. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
14	ValSten: a new wild species derived allotetraploid for increasing genetic diversity of the peanut crop (Arachis hypogaea L.). Genetic Resources and Crop Evolution, 2021, 68, 1471-1485.	1.6	6
15	Development and Genetic Characterization of Peanut Advanced Backcross Lines That Incorporate Root-Knot Nematode Resistance From Arachis stenosperma. Frontiers in Plant Science, 2021, 12, 785358.	3.6	5
16	Evolution of Homeologous Gene Expression in Polyploid Wheat. Genes, 2020, 11, 1401.	2.4	6
17	The Effects of Gene Duplication Modes on the Evolution of Regulatory Divergence in Wild and Cultivated Soybean. Frontiers in Genetics, 2020, 11, 601003.	2.3	9
18	Pod and Seed Trait QTL Identification To Assist Breeding for Peanut Market Preferences. G3: Genes, Genomes, Genetics, 2020, 10, 2297-2315.	1.8	22

SCOTT A JACKSON

#	Article	IF	CITATIONS
19	A Domestication-Associated Gene GmPRR3b Regulates the Circadian Clock and Flowering Time in Soybean. Molecular Plant, 2020, 13, 745-759.	8.3	86
20	Construction and comparison of three referenceâ€quality genome assemblies for soybean. Plant Journal, 2019, 100, 1066-1082.	5.7	113
21	Genome-Wide Reinforcement of DNA Methylation Occurs during Somatic Embryogenesis in Soybean. Plant Cell, 2019, 31, 2315-2331.	6.6	55
22	Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA. Planta, 2019, 249, 1405-1415.	3.2	13
23	Breeding crops to feed 10 billion. Nature Biotechnology, 2019, 37, 744-754.	17.5	577
24	Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution. Genes, 2019, 10, 259.	2.4	9
25	Machine learning and complex biological data. Genome Biology, 2019, 20, 76.	8.8	202
26	The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 2019, 51, 877-884.	21.4	439
27	Genome-wide nucleotide patterns and potential mechanisms of genome divergence following domestication in maize and soybean. Genome Biology, 2019, 20, 74.	8.8	13
28	A new source of root-knot nematode resistance from Arachis stenosperma incorporated into allotetraploid peanut (Arachis hypogaea). Scientific Reports, 2019, 9, 17702.	3.3	20
29	Genic C-Methylation in Soybean Is Associated with Gene Paralogs Relocated to Transposable Element-Rich Pericentromeres. Molecular Plant, 2018, 11, 485-495.	8.3	19
30	Highâ€density genetic map using wholeâ€genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnology Journal, 2018, 16, 1954-1967.	8.3	90
31	Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.	21.4	413
32	Genetic and epigenetic divergence of duplicate genes in two legume species. Plant, Cell and Environment, 2018, 41, 2033-2044.	5.7	29
33	Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants. Molecular Biology and Evolution, 2018, 35, 354-364.	8.9	41
34	Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50, 1435-1441.	21.4	168
35	Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Research, 2018, 25, 161-172.	3.4	71
36	Segmental allopolyploidy in action: Increasing diversity through polyploid hybridization and homoeologous recombination. American Journal of Botany, 2018, 105, 1053-1066.	1.7	42

#	Article	IF	CITATIONS
37	Development and Evaluation of a High Density Genotyping â€~Axiom_Arachis' Array with 58 K SNPs for Accelerating Genetics and Breeding in Groundnut. Scientific Reports, 2017, 7, 40577.	3.3	144
38	Divergent cytosine DNA methylation patterns in single ell, soybean root hairs. New Phytologist, 2017, 214, 808-819.	7.3	75
39	Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut. Molecular Plant, 2017, 10, 309-322.	8.3	114
40	Epigenomics: dissecting hybridization and polyploidization. Genome Biology, 2017, 18, 117.	8.8	21
41	Comprehensive definition of genome features in <i>Spirodela polyrhiza</i> by highâ€depth physical mapping and shortâ€read <scp>DNA</scp> sequencing strategies. Plant Journal, 2017, 89, 617-635.	5.7	115
42	Genome resources for climateâ€resilient cowpea, an essential crop for food security. Plant Journal, 2017, 89, 1042-1054.	5.7	199
43	Application of Genomic, Transcriptomic, and Metabolomic Technologies in Arachis Species. , 2016, , 209-240.		3
44	Crowdsourcing the nodulation gene network discovery environment. BMC Bioinformatics, 2016, 17, 223.	2.6	5
45	Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris). G3: Genes, Genomes, Genetics, 2016, 6, 2091-2101.	1.8	5
46	Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Research, 2016, 24, 197-216.	2.2	27
47	Widespread natural variation of DNA methylation within angiosperms. Genome Biology, 2016, 17, 194.	8.8	436
48	Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17, 33.	2.8	137
49	Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biology, 2016, 17, 7.	8.8	50
50	Evolution of plant genome architecture. Genome Biology, 2016, 17, 37.	8.8	331
51	Rice: The First Crop Genome. Rice, 2016, 9, 14.	4.0	66
52	Fluorescence <i>In Situ</i> Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (<i>Phaseolus vulgaris</i>) and Relatives. G3: Genes, Genomes, Genetics, 2016, 6, 1013-1022.	1.8	27
53	The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016, 48, 438-446.	21.4	761
54	Gene Network Reconstruction by Integration of Prior Biological Knowledge. G3: Genes, Genomes, Genetics, 2015, 5, 1075-1079.	1.8	39

SCOTT A JACKSON

#	Article	IF	CITATIONS
55	Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations. Molecular Plant, 2015, 8, 831-846.	8.3	159
56	Identification of QTLs for Rust Resistance in the Peanut Wild Species <i>Arachis magna</i> and the Development of KASP Markers for Marker-Assisted Selection. G3: Genes, Genomes, Genetics, 2015, 5, 1403-1413.	1.8	57
57	A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. Plant Physiology, 2015, 168, 1433-1447.	4.8	88
58	Gene Networks in Plant Biology: Approaches in Reconstruction and Analysis. Trends in Plant Science, 2015, 20, 664-675.	8.8	73
59	RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics, 2015, 16, 538.	2.8	86
60	Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biology, 2015, 15, 26.	3.6	47
61	A new approach for annotation of transposable elements using small RNA mapping. Nucleic Acids Research, 2015, 43, e84-e84.	14.5	28
62	Genomewide Association Studies for 50 Agronomic Traits in Peanut Using the â€~Reference Set' Comprising 300 Genotypes from 48 Countries of the Semi-Arid Tropics of the World. PLoS ONE, 2014, 9, e105228.	2.5	124
63	Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications, 2014, 5, 5443.	12.8	453
64	Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris). Frontiers in Plant Science, 2014, 5, 339.	3.6	39
65	An RNA-Seq based gene expression atlas of the common bean. BMC Genomics, 2014, 15, 866.	2.8	142
66	Accessing epigenetic variation in the plant methylome. Briefings in Functional Genomics, 2014, 13, 318-327.	2.7	24
67	Widespread and frequent horizontal transfers of transposable elements in plants. Genome Research, 2014, 24, 831-838.	5.5	177
68	Concerted evolution of <i>D1</i> and <i>D2</i> to regulate chlorophyll degradation in soybean. Plant Journal, 2014, 77, 700-712.	5.7	69
69	De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014, 32, 1045-1052.	17.5	535
70	A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46, 707-713.	21.4	1,159
71	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	17.5	1,049
72	Identification and characterization of functional centromeres of the common bean. Plant Journal, 2013, 76, 47-60.	5.7	61

#	Article	IF	CITATIONS
73	Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nature Communications, 2013, 4, 1595.	12.8	190
74	The fate of duplicated genes in a polyploid plant genome. Plant Journal, 2013, 73, 143-153.	5.7	243
75	The Subtelomeric khipu Satellite Repeat from Phaseolus vulgaris: Lessons Learned from the Genome Analysis of the Andean Genotype G19833. Frontiers in Plant Science, 2013, 4, 109.	3.6	39
76	Cytogenetics of Legumes in the Phaseoloid Clade. Plant Genome, 2013, 6, plantgenome2013.03.0004.	2.8	19
77	Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change. Agronomy, 2013, 3, 433-461.	3.0	108
78	Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 2012, 30, 83-89.	17.5	788
79	A Highly Conserved, Small LTR Retrotransposon that Preferentially Targets Genes in Grass Genomes. PLoS ONE, 2012, 7, e32010.	2.5	54
80	Integration of the Draft Sequence and Physical Map as a Framework for Genomic Research in Soybean (<i>Glycine max</i> (L.) Merr.) and Wild Soybean (<i>Glycine soja</i> Sieb. and Zucc.). G3: Genes, Genomes, Genetics, 2012, 2, 321-329.	1.8	9
81	Functional and Structural Divergence of an Unusual LTR Retrotransposon Family in Plants. PLoS ONE, 2012, 7, e48595.	2.5	11
82	Sequencing crop genomes: approaches and applications. New Phytologist, 2011, 191, 915-925.	7.3	101
83	Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of Rice, Oryza granulata. Tropical Plant Biology, 2011, 4, 217-227.	1.9	1
84	Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463, 178-183.	27.8	3,854
85	Orthologous Comparisons of the Hd1 Region across Genera Reveal Hd1 Gene Lability within Diploid Oryza Species and Disruptions to Microsynteny in Sorghum. Molecular Biology and Evolution, 2010, 27, 2487-2506.	8.9	31
86	Structural and Functional Divergence of a 1-Mb Duplicated Region in the Soybean (<i>Glycine max</i>) Genome and Comparison to an Orthologous Region from <i>Phaseolus vulgaris</i> Â Â. Plant Cell, 2010, 22, 2545-2561.	6.6	60
87	Whole-genome sequencing and intensive analysis of the undomesticated soybean (<i>Glycine soja</i>) Tj ETQq1 America, 2010, 107, 22032-22037.	1 0.7843 7.1	14 rgBT /Cve 299
88	Molecular and Chromosomal Evidence for Allopolyploidy in Soybean Â. Plant Physiology, 2009, 151, 1167-1174.	4.8	135
89	Comparative sequence analysis of <i>MONOCULM1</i> -orthologous regions in 14 <i>Oryza</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2071-2076.	7.1	119
90	Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?. Genome Research, 2009, 19, 2221-2230.	5.5	169

#	Article	IF	CITATIONS
91	A lineageâ€specific centromere retrotransposon in <i>Oryza brachyantha</i> . Plant Journal, 2009, 60, 820-831.	5.7	41
92	Three Sequenced Legume Genomes and Many Crop Species: Rich Opportunities for Translational Genomics. Plant Physiology, 2009, 151, 970-977.	4.8	122
93	BAC-end Sequence Analysis and a Draft Physical Map of the Common Bean (Phaseolus vulgaris L.) Genome. Tropical Plant Biology, 2008, 1, 40-48.	1.9	70
94	Construction, alignment and analysis of 12 framework physical maps that represent the 10 genome types of the genus Oryza. Genome Biology, 2008, 9, R45.	9.6	82
95	Comparative Physical Mapping Between Oryza sativa (AA Genome Type) and O. punctata (BB Genome) Tj ETQq1	1.0,78431 2.9	4 _{.rg} BT /Ov
96	Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus <i>Oryza</i> . Plant Journal, 2007, 52, 342-351.	5.7	99
97	Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics, 2007, 8, 330.	2.8	132
98	Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum. BMC Genomics, 2006, 7, 199.	2.8	12
99	Toward a Reference Sequence of the Soybean Genome: A Multiagency Effort. Crop Science, 2006, 46, S-55.	1.8	37
100	Physical Mapping of Plant Chromosomes. , 2005, , 131-149.		1
101	Pericentromeric Regions of Soybean (Glycine max L. Merr.) Chromosomes Consist of Retroelements and Tandemly Repeated DNA and Are Structurally and Evolutionarily Labile. Genetics, 2005, 170, 1221-1230.	2.9	53
102	Preparation of Samples for Comparative Studies of Plant Chromosomes Using In Situ Hybridization Methods. Methods in Enzymology, 2005, 395, 443-460.	1.0	28
103	Cytogenomic Analyses Reveal the Structural Plasticity of the Chloroplast Genome in Higher Plants. Plant Cell, 2001, 13, 245-254.	6.6	125
104	Comparative Fluorescence in Situ Hybridization Mapping of a 431-kb Arabidopsis thaliana Bacterial Artificial Chromosome Contig Reveals the Role of Chromosomal Duplications in the Expansion of the Brassica rapa Genome. Genetics, 2000, 156, 833-838.	2.9	90
105	Retrotransposon-Related DNA Sequences in the Centromeres of Grass Chromosomes. Genetics, 1998, 150, 1615-1623.	2.9	161