Scott A Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3914593/publications.pdf

Version: 2024-02-01

34105 27406 17,193 105 52 106 citations h-index g-index papers 114 114 114 14140 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463, 178-183.	27.8	3,854
2	A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46, 707-713.	21.4	1,159
3	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	17.5	1,049
4	Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 2012, 30, 83-89.	17.5	788
5	The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016, 48, 438-446.	21.4	761
6	Breeding crops to feed 10 billion. Nature Biotechnology, 2019, 37, 744-754.	17.5	577
7	De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology, 2014, 32, 1045-1052.	17.5	535
8	Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications, 2014, 5, 5443.	12.8	453
9	The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 2019, 51, 877-884.	21.4	439
10	Widespread natural variation of DNA methylation within angiosperms. Genome Biology, 2016, 17, 194.	8.8	436
11	Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.	21.4	413
12	Evolution of plant genome architecture. Genome Biology, 2016, 17, 37.	8.8	331
13	Whole-genome sequencing and intensive analysis of the undomesticated soybean (<i>Glycine soja</i>) Tj ETQq1 America, 2010, 107, 22032-22037.	1 0.78431 7.1	14 rgBT /Ove 299
14	The fate of duplicated genes in a polyploid plant genome. Plant Journal, 2013, 73, 143-153.	5.7	243
15	Machine learning and complex biological data. Genome Biology, 2019, 20, 76.	8.8	202
16	Genome resources for climateâ€resilient cowpea, an essential crop for food security. Plant Journal, 2017, 89, 1042-1054.	5.7	199
17	Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nature Communications, 2013, 4, 1595.	12.8	190
18	Widespread and frequent horizontal transfers of transposable elements in plants. Genome Research, 2014, 24, 831-838.	5.5	177

#	Article	IF	CITATIONS
19	Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?. Genome Research, 2009, 19, 2221-2230.	5.5	169
20	Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50, 1435-1441.	21.4	168
21	Retrotransposon-Related DNA Sequences in the Centromeres of Grass Chromosomes. Genetics, 1998, 150, 1615-1623.	2.9	161
22	Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations. Molecular Plant, 2015, 8, 831-846.	8.3	159
23	Development and Evaluation of a High Density Genotyping †Axiom_Arachis†Array with 58†KSNPs for Accelerating Genetics and Breeding in Groundnut. Scientific Reports, 2017, 7, 40577.	3.3	144
24	An RNA-Seq based gene expression atlas of the common bean. BMC Genomics, 2014, 15, 866.	2.8	142
25	Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma 1.01. BMC Genomics, 2016, 17, 33.	2.8	137
26	Molecular and Chromosomal Evidence for Allopolyploidy in Soybean Â. Plant Physiology, 2009, 151, 1167-1174.	4.8	135
27	Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics, 2007, 8, 330.	2.8	132
28	Cytogenomic Analyses Reveal the Structural Plasticity of the Chloroplast Genome in Higher Plants. Plant Cell, 2001, 13, 245-254.	6.6	125
29	Genomewide Association Studies for 50 Agronomic Traits in Peanut Using the  Reference Set' Comprising 300 Genotypes from 48 Countries of the Semi-Arid Tropics of the World. PLoS ONE, 2014, 9, e105228.	2.5	124
30	Three Sequenced Legume Genomes and Many Crop Species: Rich Opportunities for Translational Genomics. Plant Physiology, 2009, 151, 970-977.	4.8	122
31	Comparative sequence analysis of <i>MONOCULM1</i> -orthologous regions in 14 <i>Oryza</i> genomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2071-2076.	7.1	119
32	Comprehensive definition of genome features in <i>Spirodela polyrhiza</i> by highâ€depth physical mapping and shortâ€read <scp>DNA</scp> sequencing strategies. Plant Journal, 2017, 89, 617-635.	5.7	115
33	Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut. Molecular Plant, 2017, 10, 309-322.	8.3	114
34	Construction and comparison of three referenceâ€quality genome assemblies for soybean. Plant Journal, 2019, 100, 1066-1082.	5.7	113
35	Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change. Agronomy, 2013, 3, 433-461.	3.0	108
36	Sequencing crop genomes: approaches and applications. New Phytologist, 2011, 191, 915-925.	7.3	101

#	Article	IF	CITATIONS
37	Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus <i>Oryza</i> . Plant Journal, 2007, 52, 342-351.	5.7	99
38	An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Research, 2021, 6, 42.	1.8	97
39	Highâ€density genetic map using wholeâ€genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnology Journal, 2018, 16, 1954-1967.	8.3	90
40	Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology, 2021, 257, 153351.	3.5	90
41	Comparative Fluorescence in Situ Hybridization Mapping of a 431-kb Arabidopsis thaliana Bacterial Artificial Chromosome Contig Reveals the Role of Chromosomal Duplications in the Expansion of the Brassica rapa Genome. Genetics, 2000, 156, 833-838.	2.9	90
42	A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. Plant Physiology, 2015, 168, 1433-1447.	4.8	88
43	RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics, 2015, 16, 538.	2.8	86
44	A Domestication-Associated Gene GmPRR3b Regulates the Circadian Clock and Flowering Time in Soybean. Molecular Plant, 2020, 13, 745-759.	8.3	86
45	Construction, alignment and analysis of 12 framework physical maps that represent the 10 genome types of the genus Oryza. Genome Biology, 2008, 9, R45.	9.6	82
46	Divergent cytosine DNA methylation patterns in singleâ€cell, soybean root hairs. New Phytologist, 2017, 214, 808-819.	7.3	75
47	Gene Networks in Plant Biology: Approaches in Reconstruction and Analysis. Trends in Plant Science, 2015, 20, 664-675.	8.8	73
48	Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Research, 2018, 25, 161-172.	3.4	71
49	BAC-end Sequence Analysis and a Draft Physical Map of the Common Bean (Phaseolus vulgaris L.) Genome. Tropical Plant Biology, 2008, 1, 40-48.	1.9	70
50	Concerted evolution of $\langle i\rangle D1\langle i\rangle$ and $\langle i\rangle D2\langle i\rangle$ to regulate chlorophyll degradation in soybean. Plant Journal, 2014, 77, 700-712.	5.7	69
51	Rice: The First Crop Genome. Rice, 2016, 9, 14.	4.0	66
52	Identification and characterization of functional centromeres of the common bean. Plant Journal, 2013, 76, 47-60.	5.7	61
53	Structural and Functional Divergence of a 1-Mb Duplicated Region in the Soybean (<i>Glycine max</i>) Genome and Comparison to an Orthologous Region from <i>Phaseolus vulgaris</i> ÂÂ. Plant Cell, 2010, 22, 2545-2561.	6.6	60
54	Identification of QTLs for Rust Resistance in the Peanut Wild Species <i>Arachis magna</i> and the Development of KASP Markers for Marker-Assisted Selection. G3: Genes, Genomes, Genetics, 2015, 5, 1403-1413.	1.8	57

#	Article	IF	CITATIONS
55	Genome-Wide Reinforcement of DNA Methylation Occurs during Somatic Embryogenesis in Soybean. Plant Cell, 2019, 31, 2315-2331.	6.6	55
56	A Highly Conserved, Small LTR Retrotransposon that Preferentially Targets Genes in Grass Genomes. PLoS ONE, 2012, 7, e32010.	2.5	54
57	Pericentromeric Regions of Soybean (Glycine max L. Merr.) Chromosomes Consist of Retroelements and Tandemly Repeated DNA and Are Structurally and Evolutionarily Labile. Genetics, 2005, 170, 1221-1230.	2.9	53
58	An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Research, 2021, 6, 42.	1.8	51
59	Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biology, 2016, 17, 7.	8.8	50
60	Comparative Physical Mapping Between Oryza sativa (AA Genome Type) and O. punctata (BB Genome) Tj ETQqC	00.ggBT 2.9gBT	/Oygrlock 10
61	Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biology, 2015, 15, 26.	3.6	47
62	Advancing crop genomics from lab to field. Nature Genetics, 2021, 53, 595-601.	21.4	47
63	Segmental allopolyploidy in action: Increasing diversity through polyploid hybridization and homoeologous recombination. American Journal of Botany, 2018, 105, 1053-1066.	1.7	42
64	A lineageâ€specific centromere retrotransposon in <i>Oryza brachyantha</i> . Plant Journal, 2009, 60, 820-831.	5.7	41
65	Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants. Molecular Biology and Evolution, 2018, 35, 354-364.	8.9	41
66	The Subtelomeric khipu Satellite Repeat from Phaseolus vulgaris: Lessons Learned from the Genome Analysis of the Andean Genotype G19833. Frontiers in Plant Science, 2013, 4, 109.	3.6	39
67	Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris). Frontiers in Plant Science, 2014, 5, 339.	3.6	39
68	Gene Network Reconstruction by Integration of Prior Biological Knowledge. G3: Genes, Genomes, Genetics, 2015, 5, 1075-1079.	1.8	39
69	Toward a Reference Sequence of the Soybean Genome: A Multiagency Effort. Crop Science, 2006, 46, S-55.	1.8	37
70	Orthologous Comparisons of the Hd1 Region across Genera Reveal Hd1 Gene Lability within Diploid Oryza Species and Disruptions to Microsynteny in Sorghum. Molecular Biology and Evolution, 2010, 27, 2487-2506.	8.9	31
71	Genetic and epigenetic divergence of duplicate genes in two legume species. Plant, Cell and Environment, 2018, 41, 2033-2044.	5.7	29
72	Ancient genomes reveal early Andean farmers selected common beans while preserving diversity. Nature Plants, 2021, 7, 123-128.	9.3	29

#	Article	IF	Citations
73	Preparation of Samples for Comparative Studies of Plant Chromosomes Using In Situ Hybridization Methods. Methods in Enzymology, 2005, 395, 443-460.	1.0	28
74	A new approach for annotation of transposable elements using small RNA mapping. Nucleic Acids Research, 2015, 43, e84-e84.	14.5	28
75	Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Research, 2016, 24, 197-216.	2.2	27
76	Fluorescence <i>In Situ</i> Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (<i>Phaseolus vulgaris</i>) and Relatives. G3: Genes, Genomes, Genetics, 2016, 6, 1013-1022.	1.8	27
77	Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition. Nature Plants, 2022, 8, 233-244.	9.3	26
78	Accessing epigenetic variation in the plant methylome. Briefings in Functional Genomics, 2014, 13, 318-327.	2.7	24
79	Pod and Seed Trait QTL Identification To Assist Breeding for Peanut Market Preferences. G3: Genes, Genomes, Genetics, 2020, 10, 2297-2315.	1.8	22
80	Epigenomics: dissecting hybridization and polyploidization. Genome Biology, 2017, 18, 117.	8.8	21
81	A new source of root-knot nematode resistance from Arachis stenosperma incorporated into allotetraploid peanut (Arachis hypogaea). Scientific Reports, 2019, 9, 17702.	3.3	20
82	Cytogenetics of Legumes in the Phaseoloid Clade. Plant Genome, 2013, 6, plantgenome2013.03.0004.	2.8	19
83	Genic C-Methylation in Soybean Is Associated with Gene Paralogs Relocated to Transposable Element-Rich Pericentromeres. Molecular Plant, 2018, 11, 485-495.	8.3	19
84	Legacy genetics of <i>Arachis cardenasii</i> in the peanut crop shows the profound benefits of international seed exchange. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
85	Heterochromatin evolution in Arachis investigated through genome-wide analysis of repetitive DNA. Planta, 2019, 249, 1405-1415.	3.2	13
86	Genome-wide nucleotide patterns and potential mechanisms of genome divergence following domestication in maize and soybean. Genome Biology, 2019, 20, 74.	8.8	13
87	Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum. BMC Genomics, 2006, 7, 199.	2.8	12
88	Functional and Structural Divergence of an Unusual LTR Retrotransposon Family in Plants. PLoS ONE, 2012, 7, e48595.	2.5	11
89	Integration of the Draft Sequence and Physical Map as a Framework for Genomic Research in Soybean (<i>Glycine max</i> (L.) Merr.) and Wild Soybean (<i>Glycine soja</i> Sieb. and Zucc.). G3: Genes, Genomes, Genetics, 2012, 2, 321-329.	1.8	9
90	Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution. Genes, 2019, 10, 259.	2.4	9

#	Article	IF	CITATIONS
91	The Effects of Gene Duplication Modes on the Evolution of Regulatory Divergence in Wild and Cultivated Soybean. Frontiers in Genetics, 2020, 11, 601003.	2.3	9
92	Registration of GAâ€BatSten1 and GAâ€MagSten1, two induced allotetraploids derived from peanut wild relatives with superior resistance to leaf spots, rust, and rootâ€knot nematode. Journal of Plant Registrations, 2021, 15, 372-378.	0.5	9
93	Validation of resistance to rootâ€knot nematode incorporated in peanut from the wild relative <i>Arachis stenosperma</i> . Agronomy Journal, 2021, 113, 2293-2302.	1.8	7
94	Registration of three peanut allotetraploid interspecific hybrids resistant to late leaf spot disease and tomato spotted wilt. Journal of Plant Registrations, 2021, 15, 562-572.	0.5	7
95	Evolution of Homeologous Gene Expression in Polyploid Wheat. Genes, 2020, 11, 1401.	2.4	6
96	ValSten: a new wild species derived allotetraploid for increasing genetic diversity of the peanut crop (Arachis hypogaea L.). Genetic Resources and Crop Evolution, 2021, 68, 1471-1485.	1.6	6
97	Crowdsourcing the nodulation gene network discovery environment. BMC Bioinformatics, 2016, 17, 223.	2.6	5
98	Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris). G3: Genes, Genomes, Genetics, 2016, 6, 2091-2101.	1.8	5
99	Development and Genetic Characterization of Peanut Advanced Backcross Lines That Incorporate Root-Knot Nematode Resistance From Arachis stenosperma. Frontiers in Plant Science, 2021, 12, 785358.	3.6	5
100	Genetic control and allele variation among soybean maturity groups 000 through IX. Plant Genome, 2021, 14, e20146.	2.8	4
101	TAR30, a homolog of the canonical plant TTTAGGG telomeric repeat, is enriched in the proximal chromosome regions of peanut (Arachis hypogaea L.). Chromosome Research, 2022, 30, 77-90.	2.2	4
102	Fast neutron mutagenesis in soybean enriches for small indels and creates frameshift mutations. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4
103	Application of Genomic, Transcriptomic, and Metabolomic Technologies in Arachis Species. , 2016, , 209-240.		3
104	Physical Mapping of Plant Chromosomes. , 2005, , 131-149.		1
105	Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of Rice, Oryza granulata. Tropical Plant Biology, 2011, 4, 217-227.	1.9	1