
Daniel C Link

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3913897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine, 2014, 20, 1472-1478.	30.7	1,533
2	CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature, 2013, 495, 227-230.	27.8	1,119
3	Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature, 2015, 518, 552-555.	27.8	685
4	<i>TP53</i> and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. New England Journal of Medicine, 2016, 375, 2023-2036.	27.0	663
5	G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood, 2005, 106, 3020-3027.	1.4	444
6	Functional Heterogeneity of Genetically Defined Subclones in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 379-392.	16.8	330
7	Immune Escape of Relapsed AML Cells after Allogeneic Transplantation. New England Journal of Medicine, 2018, 379, 2330-2341.	27.0	322
8	Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia. JAMA - Journal of the American Medical Association, 2015, 314, 811.	7.4	302
9	Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends in Immunology, 2014, 35, 32-37.	6.8	231
10	Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood, 2009, 114, 1331-1339.	1.4	211
11	Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood, 2015, 126, 2484-2490.	1.4	207
12	A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nature Communications, 2020, 11, 332.	12.8	184
13	The hematopoietic stem cell niche in homeostasis and disease. Blood, 2015, 126, 2443-2451.	1.4	182
14	CpG Island Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell, 2017, 168, 801-816.e13.	28.9	177
15	Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood, 2007, 110, 4179-4187.	1.4	173
16	Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers. New England Journal of Medicine, 2021, 384, 924-935.	27.0	170
17	Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nature Communications, 2018, 9, 455.	12.8	150
18	ldentification of a Novel <emph type="ital">TP53</emph> Cancer Susceptibility Mutation Through Whole-Genome Sequencing of a Patient With Therapy-Related AML. JAMA - Journal of the American Medical Association, 2011, 305, 1568.	7.4	146

#	Article	IF	CITATIONS
19	Clonal Architecture of Secondary Acute Myeloid Leukemia Defined by Single-Cell Sequencing. PLoS Genetics, 2014, 10, e1004462.	3.5	115
20	Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biology, 2018, 16, e3000047.	5.6	110
21	Granulocyte Colony-Stimulating Factor Induces Osteoblast Apoptosis and Inhibits Osteoblast Differentiation. Journal of Bone and Mineral Research, 2008, 23, 1765-1774.	2.8	109
22	Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML. Blood, 2016, 127, 893-897.	1.4	94
23	Mutation Clearance after Transplantation for Myelodysplastic Syndrome. New England Journal of Medicine, 2018, 379, 1028-1041.	27.0	93
24	Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood, 2007, 110, 1648-1655.	1.4	88
25	Targeting of Mesenchymal Stromal Cells by <i>Cre</i> -Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells. Journal of Bone and Mineral Research, 2016, 31, 2001-2007.	2.8	88
26	Peroxisomal Lipid Synthesis Regulates Inflammation by Sustaining Neutrophil Membrane Phospholipid Composition and Viability. Cell Metabolism, 2015, 21, 51-64.	16.2	76
27	Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane. Blood, 2011, 117, 3539-3547.	1.4	69
28	Neutrophil Homeostasis: A New Role for Stromal Cell–Derived Factor-1. Immunologic Research, 2005, 32, 169-178.	2.9	44
29	Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia. Experimental Hematology, 2016, 44, 603-613.	0.4	44
30	Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. Journal of Clinical Investigation, 2019, 129, 2920-2931.	8.2	40
31	<i>MIR142</i> Loss-of-Function Mutations Derepress ASH1L to Increase <i>HOXA</i> Gene Expression and Promote Leukemogenesis. Cancer Research, 2018, 78, 3510-3521.	0.9	39
32	MicroRNA-142 Is Critical for the Homeostasis and Function of Type 1 Innate Lymphoid Cells. Immunity, 2019, 51, 479-490.e6.	14.3	39
33	Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials, 2022, 280, 121245.	11.4	37
34	Long-Term Effects of G-CSF Therapy in Cyclic Neutropenia. New England Journal of Medicine, 2017, 377, 2290-2292.	27.0	35
35	Radiation causes tissue damage by dysregulating inflammasome–gasdermin D signaling in both host and transplanted cells. PLoS Biology, 2020, 18, e3000807.	5.6	35
36	Clonal hematopoiesis and risk for hematologic malignancy. Blood, 2020, 136, 1599-1605.	1.4	35

#	Article	IF	CITATIONS
37	Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. Journal of Clinical Investigation, 2019, 129, 2745-2759.	8.2	32
38	Mechanisms of leukemic transformation in congenital neutropenia. Current Opinion in Hematology, 2019, 26, 34-40.	2.5	28
39	Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring <i>SF3B1</i> or <i>U2AF1</i> Mutations. Cancer Research, 2021, 81, 4499-4513.	0.9	28
40	Specific Signals Generated by the Cytoplasmic Domain of the Granulocyte Colony-Stimulating Factor (G-CSF) Receptor Are Not Required for G-CSF–Dependent Granulocytic Differentiation. Blood, 1998, 92, 353-361.	1.4	26
41	TGF-β Signaling Plays an Essential Role in the Lineage Specification of Mesenchymal Stem/Progenitor Cells in Fetal Bone Marrow. Stem Cell Reports, 2019, 13, 48-60.	4.8	26
42	Heterozygous variants of <i>CLPB</i> are a cause of severe congenital neutropenia. Blood, 2022, 139, 779-791.	1.4	25
43	Concise Review: The Malignant Hematopoietic Stem Cell Niche. Stem Cells, 2017, 35, 3-8.	3.2	20
44	N adherin Regulation of Bone Growth and Homeostasis Is Osteolineage Stage–Specific. Journal of Bone and Mineral Research, 2017, 32, 1332-1342.	2.8	19
45	Osteoclasts are dispensable for hematopoietic progenitor mobilization by granulocyte colony-stimulating factor in mice. Experimental Hematology, 2015, 43, 110-114.e2.	0.4	18
46	TGFβR-SMAD3 Signaling Induces Resistance to PARP Inhibitors in the Bone Marrow Microenvironment. Cell Reports, 2020, 33, 108221.	6.4	18
47	Suppression of CXCL12 Production by Bone Marrow Osteoblasts Is a Common and Critical Pathway for Cytokine-Induced Mobilization Blood, 2007, 110, 220-220.	1.4	18
48	Focal disruption of DNA methylation dynamics at enhancers in IDH-mutant AML cells. Leukemia, 2022, 36, 935-945.	7.2	18
49	Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice. Frontiers in Endocrinology, 2016, 7, 87.	3.5	16
50	MicroRNA-223 Regulates Granulopoiesis but Is Not Required for HSC Maintenance in Mice. PLoS ONE, 2015, 10, e0119304.	2.5	15
51	The α2β1 Integrin Regulates Hematopoietic Stem Cell Engraftment Blood, 2006, 108, 1328-1328.	1.4	15
52	Genetic and Transcriptional Contributions to Relapse in Normal Karyotype Acute Myeloid Leukemia. Blood Cancer Discovery, 2022, 3, 32-49.	5.0	14
53	Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia. Leukemia Research, 2015, 39, 1437-1442.	0.8	11
54	Regulation of granulopoiesis: lessons from leukocyte adhesion deficiency. Blood, 2001, 98, 3178-3178.	1.4	10

#	Article	IF	CITATIONS
55	Megakaryocytes in the hematopoietic stem cell niche. Nature Medicine, 2014, 20, 1233-1234.	30.7	10
56	TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. Journal of Clinical Investigation, 2022, 132, .	8.2	10
57	Convergent Clonal Evolution of Signaling Gene Mutations Is a Hallmark of Myelodysplastic Syndrome Progression. Blood Cancer Discovery, 2022, 3, 330-345.	5.0	10
58	Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes. Experimental Hematology, 2017, 55, 19-33.	0.4	9
59	Mutations In the DNA Methyltransferase Gene DNMT3A Are Highly Recurrent In Patients with Intermediate Risk Acute Myeloid Leukemia, and Predict Poor Outcomes. Blood, 2010, 116, 99-99.	1.4	9
60	Molecular genetics of AML. Best Practice and Research in Clinical Haematology, 2012, 25, 409-414.	1.7	8
61	TLR7/8 agonist treatment induces an increase in bone marrow resident dendritic cells and hematopoietic progenitor expansion and mobilization. Experimental Hematology, 2021, 96, 35-43.e7.	0.4	8
62	The Granulocyte Colony-Stimulating Factor Receptor Is Required for the Mobilization of Murine Hematopoietic Progenitors Into Peripheral Blood by Cyclophosphamide or Interleukin-8 But Not Flt-3 Ligand. Blood, 1997, 90, 2522-2528.	1.4	8
63	A Pilot Study Evaluating the Safety and Efficacy of AMD3100 for the Mobilization and Transplantation of HLA-Matched Sibling Donor Hematopoietic Stem Cells in Patients with Advanced Hematological Malignancies Blood, 2004, 104, 3341-3341.	1.4	7
64	HLA-Matched Sibling Donor Stem Cell Mobilization Can Be Safely and Effectively Reduced from a Five Day to a One Day Process by a Direct Antagonist of the CXCR4/SDF-1 Interaction Blood, 2006, 108, 53-53.	1.4	7
65	Acute Ether Lipid Deficiency Affects Neutrophil Biology in Mice. Cell Metabolism, 2015, 21, 652-653.	16.2	5
66	Cooperating, congenital neutropenia–associated Csf3r and Runx1 mutations activate pro-inflammatory signaling and inhibit myeloid differentiation of mouse HSPCs. Annals of Hematology, 2020, 99, 2329-2338.	1.8	5
67	The Role Of Early TP53 Mutations On The Evolution Of Therapy-Related AML. Blood, 2013, 122, 5-5.	1.4	5
68	High-Resolution Comparative Genomic Hybridization of Mirna Genes In Therapy-Related AML Identifies a Somatic Deletion of MiR-223. Blood, 2010, 116, 2759-2759.	1.4	5
69	Recurrent Transcriptional Responses in AML and MDS patients Treated with Decitabine. Experimental Hematology, 2022, , .	0.4	5
70	Canonical signaling by TGF family members in mesenchymal stromal cells is dispensable for hematopoietic niche maintenance under basal and stress conditions. PLoS ONE, 2020, 15, e0233751.	2.5	4
71	Microbiota Signals Suppress B Lymphopoiesis With Aging in Mice. Frontiers in Immunology, 2021, 12, 767267.	4.8	4
72	IL-1β expression in bone marrow dendritic cells is induced by TLR2 agonists and regulates HSC function. Blood, 2022, 140, 1607-1620.	1.4	4

#	Article	IF	CITATIONS
73	Mutations in the ELA2 Gene Encoding Neutrophil Elastase Induce the Unfolded Protein Response and May Contribute to Neutropenia through the UPR-Dependent Apoptosis of Granulocytic Precursors Blood, 2005, 106, 91-91.	1.4	3
74	G-CSF Disrupts the Stem Cell Niche by Increasing Turnover of Bone Marrow Osteoblasts Blood, 2006, 108, 87-87.	1.4	3
75	Dysregulation and Recurrent Mutation Of miRNA-142 In De Novo AML. Blood, 2013, 122, 472-472.	1.4	3
76	DNMT3A-Dependent DNA Methylation May Act As a Tumor Suppressor-Not a Tumor Promoter-during AML Progression. Blood, 2016, 128, 1050-1050.	1.4	3
77	The CXCR4 Antagonist, BL8040, Is Highly Active Against Human T-ALL in Preclinical Models. Blood, 2018, 132, 2700-2700.	1.4	3
78	A Comparison of the Ability of AMD3100 Versus G-CSF to Induce Angiogenesis and Mobilize Endothelial Progenitor Cells (EPCs) Blood, 2004, 104, 3597-3597.	1.4	2
79	Bone Marrow-Derived Aldehyde Dehdrogenase Expressing Cells Possess Endothelial Progenitor Function in Addition to Hematopoietic Repopulating Ability and Aid in Blood Flow Recovery after Acute Ischemic Injury Blood, 2005, 106, 2663-2663.	1.4	2
80	Disruption of SDF-1/CXCR4 Signaling during Flt-3 Ligand and Stem Cell Factor (SCF) Induced Hematopoietic Progenitor Mobilization Blood, 2004, 104, 4139-4139.	1.4	2
81	Comprehensive Evaluation of MicroRNA Genes and Gene Expression Using Next Generation Sequencing in a Patient with Acute Myelogenous Leukemia Blood, 2009, 114, 271-271.	1.4	2
82	Mechanisms of Neutrophil Release from the Bone Marrow. Blood, 2013, 122, SCI-43-SCI-43.	1.4	2
83	Understanding Neutropenia: The 20 Year Experience of the Severe Chronic Neutropenia International Registry (SCNIR). Blood, 2014, 124, 2730-2730.	1.4	2
84	Myelodysplasia, Leukemia, Lymphoid Malignancies, and Other Cancers in Patients with Severe Chronic Neutropenia. Blood, 2018, 132, 16-16.	1.4	2
85	Imaging Mass Cytometry Reveals the Spatial Architecture of Myelodysplastic Syndromes and Secondary Acute Myeloid Leukemias. Blood, 2020, 136, 44-45.	1.4	2
86	Decitabine salvage for <i>TP53</i> -mutated, relapsed/refractory acute myeloid leukemia after cytotoxic induction therapy. Haematologica, 2022, 107, 1709-1713.	3.5	2
87	Impaired myelopoiesis in congenital neutropenia: insights into clonal and malignant hematopoiesis. Hematology American Society of Hematology Education Program, 2021, 2021, 514-520.	2.5	2
88	Soil and Seed: Coconspirators in Therapy-Induced Myeloid Neoplasms. Blood Cancer Discovery, 2020, 1, 10-12.	5.0	1
89	Complete Sequencing and Comparison of 12 Normal Karyotype M1 AML Genomes with 12 t(15;17) Positive M3-APL Genomes. Blood, 2011, 118, 404-404.	1.4	1
90	G-CSF Treatment Induces Toll-Like Receptor Signaling and Regulates Hematopoietic Stem Cell Function. Blood, 2013, 122, 1181-1181.	1.4	1

#	Article	IF	CITATIONS
91	Dynamic Changes in Clonal Clearance with Decitabine Therapy in AML and MDS Patients. Blood, 2015, 126, 689-689.	1.4	1
92	G-CSF Receptor Mutations Found in Patients with Severe Congenital Neutropenia Confer a Strong Competitive Advantage at the Hematopoeitic Stem Cell Level That Is Dependent on Increased Systemic Levels of G-CSF Blood, 2004, 104, 457-457.	1.4	1
93	Evaluation of the Phenotype and GVHD-Inducing Potential of Splenic T Cells Isolated from G-CSF, AMD3100, or G-CSF and AMD3100 Pretreated Allogeneic Donors Blood, 2005, 106, 5224-5224.	1.4	1
94	Conserved Transcriptional Deregulation Underlies GFI1 and ELANE Mutant Neutropenia. Blood, 2011, 118, 13-13.	1.4	1
95	Impact of G-CSF on Outcomes of Pregnancy in Women with Severe Chronic Neutropenia. Blood, 2011, 118, 4786-4786.	1.4	1
96	Co-Acquisition of RUNX1 and CSF3R Mutations Transforms Hematopoietic Progenitor Cells of CN Patients into More Primitive Highly Proliferative Blasts: Evidence in CN Patients and in a Mouse Model. Blood, 2014, 124, 223-223.	1.4	1
97	Increased Incidence of Clonal Hematopoiesis in Lung Transplant Recipients Involves DNA Damage Response Genes. Blood, 2021, 138, 2163-2163.	1.4	1
98	Combined Inhibition of CXCR4 Signaling and System xc- Transporter Activity Induces Synthetic Lethality in T-ALL Cells By Suppressing Gsh and Inducing Ferroptosis. Blood, 2020, 136, 37-37.	1.4	1
99	Regulation of Systemic and Local Neutrophil Responses by G-CSF during Pulmonary Pseudomonas aeruginosa Infection Blood, 2004, 104, 1460-1460.	1.4	0
100	G-CSF and AMD3100 Mobilize Angiogenic Cells into the Blood That Stimulate Angiogenesis In Vivo through a Paracrine Mechanism Blood, 2005, 106, 188-188.	1.4	0
101	Mutations of the ELA2 Gene Found in Patients with Severe Congenital Neutropenia Induce the Unfolded Protein Response and Cellular Apoptosis Blood, 2006, 108, 499-499.	1.4	0
102	The Differential Role of Stromal Derived Factor-1 (SDF-1) and Monocyte Chemoattractant Protein-1 (MCP-1) in the Recruitment of Angiogenic Cells to Ischemic Tissue Blood, 2006, 108, 417-417.	1.4	0
103	CXCR4 Signals Regulate Basal and G-CSF Induced Neutrophil Release from the Bone Marrow Blood, 2006, 108, 673-673.	1.4	0
104	CXCR4 Signals Regulate Neutrophil Release from the Bone Marrow but Not Clearance from the Circulation Blood, 2007, 110, 3297-3297.	1.4	0
105	Cyclic Neutropenia Is Not Associated with Transformation to MDS and AML Blood, 2007, 110, 3306-3306.	1.4	0
106	Granulocytic Precursors from Patients with ELA2-Mutant Severe Congenital Neutropenia Display a Transcriptional Profile Consistent with Activation of the Unfolded Protein Response Blood, 2007, 110, 662-662.	1.4	0
107	The Inflammatory Subset of Monocytes Stimulates Angiogenesis at Sites of Ischemia by Altering the Balance of Pro- and Anti-Inflammatory Cytokines Blood, 2007, 110, 240-240.	1.4	0
108	Aldehyde Dehydrogenase-Activity Purifies Multiple Hemangiogenic Lineages That Accelerate Vascularization of Ischemic Tissue through Paracrine Support of Neovessel Formation Blood, 2007, 110, 3716-3716.	1.4	0

#	Article	IF	CITATIONS
109	Disruption of the Osteoblast Niche by G-CSF Induces Hematopoietic Stem Cell Quiescence and Loss of Long-Term Repopulating Activity Blood, 2007, 110, 2217-2217.	1.4	0
110	Predictors of Transformation to Myelodysplasia/Acute Myelogenous Leukemia (MDS/AML) in Severe Congenital Neutropenia (SCN) Blood, 2007, 110, 3307-3307.	1.4	0
111	Conditioning of Monocytes in the Bone Marrow by Inflammatory Cytokines Inhibits Their Angiogenic Potential at Peripheral Sites of Ischemia. Blood, 2008, 112, 471-471.	1.4	0
112	Disruption of the Osteoblast Niche by G-CSF Is Associated with Hematopoietic Stem Cell Quiescence and Loss of Long-Term Repopulating Activity: Role of Cdkn1a. Blood, 2008, 112, 2447-2447.	1.4	0
113	Bone Marrow Monocyte/Macrophages Provide Signals Necessary for Osteoblast Maintenance: Potential Role for Insulin-Like Growth Factor Signaling. Blood, 2008, 112, 323-323.	1.4	0
114	Induction of the Unfolded Protein Response but Normal Basal Granulopoiesis in Mice Expressing G192X ELA2. Blood, 2008, 112, 314-314.	1.4	0
115	Loss of PERK Signaling Results in Impaired Granulopoiesis in Transgenic Mice Expressing Mutant Ela2 Blood, 2009, 114, 551-551.	1.4	0
116	CXCR2 Signals Act in Concert with CXCR4 to Regulate Neutrophil Release From the Bone Marrow Blood, 2009, 114, 235-235.	1.4	0
117	Alterations In the Bone Marrow Microenvironment Contribute to Oxidative Stress and DNA Damage In Hematopoietic Stem/Progenitors Carrying a Csf3r Truncation Mutation. Blood, 2010, 116, 387-387.	1.4	0
118	DNA Sequence of the Cancer Genome of a Patient with Therapy-Related Acute Myeloid Leukemia. Blood, 2010, 116, 580-580.	1.4	0
119	The NK Cell MicroRNA Transcriptome Defined by Next-Generation Sequencing Identifies IL-15-Signaled Alterations In Mature MiR-223 Expression, and MiR-223 as a Potential Regulator of Murine Granzyme B. Blood, 2010, 116, 104-104.	1.4	0
120	ELANE Mutations in Cyclic and Congenital Neutropenia: Genotype-Phenotype Relationships,. Blood, 2011, 118, 3398-3398.	1.4	0
121	Targeting Bone Marrow Lymphoid Niches In Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1398-1398.	1.4	0
122	Myeloid Dendritic Cells Regulate HSPC Trafficking In The Bone Marrow. Blood, 2013, 122, 584-584.	1.4	0
123	MicroRNA landscape in non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2014, 32, e22194-e22194.	1.6	0
124	Rare Hematopoietic Subclones Harboring Leukemogenic TP53 Mutations Are Detectable Via Error-Corrected Sequencing in Healthy Elderly Individuals. Blood, 2014, 124, 2907-2907.	1.4	0
125	Loss of TGF-Î ² Signaling in Bone Marrow Mesenchymal Progenitors Promotes Adipocyte over Osteoblast Differentiation but Does Not Disrupt the HSC Niche. Blood, 2015, 126, 666-666.	1.4	0
126	Non-Malignant Oligoclonal Hematopoiesis Commonly Follows Cytoreductive Chemotherapy in Adult De Novo AML Patients. Blood, 2015, 126, 686-686.	1.4	0

#	Article	IF	CITATIONS
127	Targeting Bone Marrow Mesenchymal Stromal Cells Using Cre-Recombinase Transgenes. Blood, 2015, 126, 2401-2401.	1.4	0
128	Clonal Evolution During Stress Hematopoiesis. Blood, 2017, 130, SCI-38-SCI-38.	1.4	0
129	Adverse Outcomes in Acute Myeloid Leukemia Are Associated with Tumor Cell-Mediated Immunosuppression. Blood, 2021, 138, 800-800.	1.4	0
130	Microbiota Signals Suppress the Lymphoid Specification of Hematopoietic Stem Cells. Blood, 2021, 138, 204-204.	1.4	0
131	Effects of PARP Inhibitor Therapy on p53-Deficient Hematopoietic Stem and Progenitor Cell Fitness. Blood, 2021, 138, 3275-3275.	1.4	0
132	Signaling Gene Mutations Are Characterized By Diverse Patterns of Expansion and Contraction during Progression from MDS to Secondary AML. Blood, 2020, 136, 2-3.	1.4	0
133	Molecular Profiling of Decitabine Response in MDS and AML Patients. Blood, 2020, 136, 40-40.	1.4	0
134	Evidence of Synergistic Effect of Idasanutlin and Navitoclax Using T-Cell Acute Lymphoblastic Leukemia Patient-Derived Xenografts. Blood, 2020, 136, 41-41.	1.4	0
135	TGF-Î ² Signaling Contributes to the Clonal Dominance of Jak2V617F Hematopoietic Stem/Progenitor Cells. Blood, 2020, 136, 11-11.	1.4	0