
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3913326/publications.pdf Version: 2024-02-01

MANG KANG

#	Article	IF	CITATIONS
1	Skyrmion-based artificial synapses for neuromorphic computing. Nature Electronics, 2020, 3, 148-155.	26.0	346
2	Compact Modeling of Perpendicular-Anisotropy CoFeB/MgO Magnetic Tunnel Junctions. IEEE Transactions on Electron Devices, 2012, 59, 819-826.	3.0	330
3	High Speed, High Stability and Low Power Sensing Amplifier for MTJ/CMOS Hybrid Logic Circuits. IEEE Transactions on Magnetics, 2009, 45, 3784-3787.	2.1	311
4	Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nature Electronics, 2018, 1, 582-588.	26.0	304
5	Skyrmion-Electronics: An Overview and Outlook. Proceedings of the IEEE, 2016, 104, 2040-2061.	21.3	289
6	Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. Journal of Physics Condensed Matter, 2020, 32, 143001.	1.8	268
7	Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nature Communications, 2018, 9, 671.	12.8	259
8	Magnetic skyrmion-based synaptic devices. Nanotechnology, 2017, 28, 08LT02.	2.6	223
9	Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack. Scientific Reports, 2015, 5, 11369.	3.3	205
10	Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory. Scientific Reports, 2016, 6, 23164.	3.3	180
11	Perpendicular-anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque. Journal Physics D: Applied Physics, 2015, 48, 065001.	2.8	176
12	Magnetic skyrmion-based artificial neuron device. Nanotechnology, 2017, 28, 31LT01.	2.6	169
13	Control and manipulation of a magnetic skyrmionium in nanostructures. Physical Review B, 2016, 94, .	3.2	137
14	Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology. IEEE Transactions on Electron Devices, 2015, 62, 1769-1777.	3.0	135
15	Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction. IEEE Transactions on Electron Devices, 2016, 63, 1762-1767.	3.0	132
16	Low Power Magnetic Full-Adder Based on Spin Transfer Torque MRAM. IEEE Transactions on Magnetics, 2013, 49, 4982-4987.	2.1	126
17	Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures. Scientific Reports, 2015, 5, 18173.	3.3	120
18	High-Density NAND-Like Spin Transfer Torque Memory With Spin Orbit Torque Erase Operation. IEEE Electron Device Letters, 2018, 39, 343-346.	3.9	119

#	Article	IF	CITATIONS
19	Modeling and Exploration of the Voltage-Controlled Magnetic Anisotropy Effect for the Next-Generation Low-Power and High-Speed MRAM Applications. IEEE Nanotechnology Magazine, 2017, 16, 387-395.	2.0	112
20	Spintronics for Energy- Efficient Computing: An Overview and Outlook. Proceedings of the IEEE, 2021, 109, 1398-1417.	21.3	112
21	A compact skyrmionic leaky–integrate–fire spiking neuron device. Nanoscale, 2018, 10, 6139-6146.	5.6	96
22	Synchronous Non-Volatile Logic Gate Design Based on Resistive Switching Memories. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 443-454.	5.4	90
23	Robust Ultra-Low Power Non-Volatile Logic-in-Memory Circuits in FD-SOI Technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 847-857.	5.4	85
24	All Spin Artificial Neural Networks Based on Compound Spintronic Synapse and Neuron. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 828-836.	4.0	84
25	Compact Model of Subvolume MTJ and Its Design Application at Nanoscale Technology Nodes. IEEE Transactions on Electron Devices, 2015, 62, 2048-2055.	3.0	78
26	Stateful Reconfigurable Logic via a Single-Voltage-Gated Spin Hall-Effect Driven Magnetic Tunnel Junction in a Spintronic Memory. IEEE Transactions on Electron Devices, 2017, 64, 4295-4301.	3.0	76
27	Proposal of Toggle Spin Torques Magnetic RAM for Ultrafast Computing. IEEE Electron Device Letters, 2019, 40, 726-729.	3.9	74
28	Magnetic skyrmions for unconventional computing. Materials Horizons, 2021, 8, 854-868.	12.2	74
29	Giant interfacial perpendicular magnetic anisotropy in MgO/CoFe/capping layer structures. Applied Physics Letters, 2017, 110, .	3.3	73
30	Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy. Materials, 2016, 9, 41.	2.9	72
31	Complementary Skyrmion Racetrack Memory With Voltage Manipulation. IEEE Electron Device Letters, 2016, 37, 924-927.	3.9	70
32	Skyrmions in Magnetic Tunnel Junctions. ACS Applied Materials & amp; Interfaces, 2018, 10, 16887-16892.	8.0	68
33	Modulation of Heavy Metal/Ferromagnetic Metal Interface for Highâ€Performance Spintronic Devices. Advanced Electronic Materials, 2019, 5, 1900134.	5.1	64
34	A Multilevel Cell STT-MRAM-Based Computing In-Memory Accelerator for Binary Convolutional Neural Network. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	51
35	Compact Modeling of Perpendicular-Magnetic-Anisotropy Double-Barrier Magnetic Tunnel Junction With Enhanced Thermal Stability Recording Structure. IEEE Transactions on Electron Devices, 2019, 66, 2431-2436.	3.0	51
36	Dynamic compact model of Spin-Transfer Torque based Magnetic Tunnel Junction (MTJ). , 2009, , .		50

#	Article	IF	CITATIONS
37	Spintronic Processing Unit in Spin Transfer Torque Magnetic Random Access Memory. IEEE Transactions on Electron Devices, 2019, 66, 2017-2022.	3.0	50
38	High reliability sensing circuit for deep submicron spin transfer torque magnetic random access memory. Electronics Letters, 2013, 49, 1283-1285.	1.0	49
39	Skyrmion-Based Ultra-Low Power Electric-Field-Controlled Reconfigurable (SUPER) Logic Gate. IEEE Electron Device Letters, 2019, 40, 1984-1987.	3.9	45
40	Dynamics of a magnetic skyrmionium driven by spin waves. Applied Physics Letters, 2018, 112, .	3.3	43
41	Ultra-High Density Content Addressable Memory Based on Current Induced Domain Wall Motion in Magnetic Track. IEEE Transactions on Magnetics, 2012, 48, 3219-3222.	2.1	41
42	Skyrmion Racetrack Memory With Random Information Update/Deletion/Insertion. IEEE Transactions on Electron Devices, 2018, 65, 87-95.	3.0	41
43	PXNOR-BNN: In/With Spin-Orbit Torque MRAM Preset-XNOR Operation-Based Binary Neural Networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2668-2679.	3.1	41
44	Temperature Impact Analysis and Access Reliability Enhancement for 1T1MTJ STT-RAM. IEEE Transactions on Reliability, 2016, 65, 1755-1768.	4.6	40
45	Enhanced Spin-Orbit Torque and Multilevel Current-Induced Switching in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">W</mml:mi </mml:mrow><mml:mi bitcomplements of the second second</mml:mi </mml:mrow></mml:math 	3.8 < mml:mte	39 xt>â^'
46	Stochastic Computing Implemented by Skyrmionic Logic Devices. Physical Review Applied, 2020, 13, .	3.8	39
47	Magnetic nonâ€volatile flipâ€flop with spinâ€Hall assistance. Physica Status Solidi - Rapid Research Letters, 2015, 9, 375-378.	2.4	33
48	Addressing the Thermal Issues of STT-MRAM From Compact Modeling to Design Techniques. IEEE Nanotechnology Magazine, 2018, 17, 345-352.	2.0	33
49	A true random number generator based on parallel STT-MTJs. , 2017, , .		31
50	Ultra-Dense Ring-Shaped Racetrack Memory Cache Design. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 215-225.	5.4	31
51	Low Store Power, High Speed, High Density, Nonvolatile SRAM Design with Spin Hall Effect-Driven Magnetic Tunnel Junctions. IEEE Nanotechnology Magazine, 2016, , 1-1.	2.0	30
52	Design Optimization and Analysis of Multicontext STT-MTJ/CMOS Logic Circuits. IEEE Nanotechnology Magazine, 2015, 14, 169-177.	2.0	29
53	Radiation-Induced Soft Error Analysis of STT-MRAM: A Device to Circuit Approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35, 380-393.	2.7	29
54	Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications. Applied Physics Letters, 2017, 111, .	3.3	29

#	Article	IF	CITATIONS
55	A Self-Timed Voltage-Mode Sensing Scheme With Successive Sensing and Checking for STT-MRAM. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1602-1614.	5.4	29
56	High-Frequency Low-Power Magnetic Full-Adder Based on Magnetic Tunnel Junction With Spin-Hall Assistance. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	28
57	Large influence of capping layers on tunnel magnetoresistance in magnetic tunnel junctions. Applied Physics Letters, 2016, 109, .	3.3	26
58	Compact Modeling and Evaluation of Magnetic Skyrmion-Based Racetrack Memory. IEEE Transactions on Electron Devices, 2017, 64, 1060-1068.	3.0	26
59	Influence of heavy metal materials on magnetic properties of Pt/Co/heavy metal tri-layered structures. Applied Physics Letters, 2017, 110, .	3.3	26
60	Interfacial Perpendicular Magnetic Anisotropy in Sub-20 nm Tunnel Junctions for Large-Capacity Spin-Transfer Torque Magnetic Random-Access Memory. IEEE Magnetics Letters, 2017, 8, 1-5.	1.1	25
61	A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation. Journal of Applied Physics, 2017, 122, .	2.5	24
62	Spintronic Processing Unit Within Voltage-Gated Spin Hall Effect MRAMs. IEEE Nanotechnology Magazine, 2019, 18, 473-483.	2.0	24
63	A Survey of Test and Reliability Solutions for Magnetic Random Access Memories. Proceedings of the IEEE, 2021, 109, 149-169.	21.3	24
64	Perpendicular magnetization switching by large spin–orbit torques from sputtered Bi ₂ Te ₃ *. Chinese Physics B, 2020, 29, 078505.	1.4	23
65	In-memory direct processing based on nanoscale perpendicular magnetic tunnel junctions. Nanoscale, 2018, 10, 21225-21230.	5.6	22
66	Domain-Wall Motion Driven by Laplace Pressure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Co</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>Fe</mml:mi><mml:mi>mathvariant="normal">B</mml:mi><mml:mo>/</mml:mo><mml:mi>MgO</mml:mi></mml:mrow></mml:math 	m tæ xt>â^'	202ml:mtext</td
67	Nanodots with Perpendicular Anisotropy. Physical Review Applied, 2018, 9, . Phase-change-assisted spin-transfer torque switching in perpendicular magnetic tunnel junctions. Applied Physics Letters, 2021, 119, .	3.3	22
68	Exploiting Spin-Orbit Torque Devices As Reconfigurable Logic for Circuit Obfuscation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38, 57-69.	2.7	21
69	Thermal Brownian Motion of Skyrmion for True Random Number Generation. IEEE Transactions on Electron Devices, 2020, 67, 2553-2558.	3.0	20
70	Exploiting Carbon Nanotube FET and Magnetic Tunneling Junction for Near-Memory-Computing Paradigm. IEEE Transactions on Electron Devices, 2021, 68, 1975-1979.	3.0	20
71	Modeling and Evaluation of Sub-10-nm Shape Perpendicular Magnetic Anisotropy Magnetic Tunnel Junctions. IEEE Transactions on Electron Devices, 2018, 65, 5537-5544.	3.0	18
72	Low-Power (1T1N) Skyrmionic Synapses for Spiking Neuromorphic Systems. IEEE Access, 2019, 7, 5034-5044.	4.2	18

#	Article	IF	CITATIONS
73	Efficient Computation Reduction in Bayesian Neural Networks Through Feature Decomposition and Memorization. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 1703-1712.	11.3	17
74	Large voltage-controlled magnetic anisotropy in the SrTiO3/Fe/Cu structure. Applied Physics Letters, 2017, 111, 152403.	3.3	16
75	Novel Radiation Hardening Read/Write Circuits Using Feedback Connections for Spin–Orbit Torque Magnetic Random Access Memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 1853-1862.	5.4	16
76	Self-Adaptive Write Circuit for Magnetic Tunneling Junction Memory With Voltage-Controlled Magnetic Anisotropy Effect. IEEE Nanotechnology Magazine, 2018, 17, 492-499.	2.0	15
77	Progresses and challenges of spin orbit torque driven magnetization switching and application (Invited). , 2018, , .		15
78	Design of an Area-Efficient Computing in Memory Platform Based on STT-MRAM. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	15
79	A Novel Computing-in-Memory Platform Based on Hybrid Spintronic/CMOS Memory. IEEE Transactions on Electron Devices, 2022, 69, 1698-1705.	3.0	15
80	Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale. Applied Physics Letters, 2017, 111, .	3.3	14
81	Demonstration of Multi-State Memory Device Combining Resistive and Magnetic Switching Behaviors. IEEE Electron Device Letters, 2018, 39, 684-687.	3.9	14
82	Experimental demonstration of voltage-gated spin-orbit torque switching in an antiferromagnet/ferromagnet structure. Physical Review B, 2021, 103, .	3.2	14
83	DASM: Data-Streaming-Based Computing in Nonvolatile Memory Architecture for Embedded System. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2046-2059.	3.1	13
84	Skyrmion-Induced Memristive Magnetic Tunnel Junction for Ternary Neural Network. IEEE Journal of the Electron Devices Society, 2019, 7, 529-533.	2.1	13
85	Spintronic Computing-in-Memory Architecture Based on Voltage-Controlled Spin–Orbit Torque Devices for Binary Neural Networks. IEEE Transactions on Electron Devices, 2021, 68, 4944-4950.	3.0	13
86	Efficient and controllable magnetization switching induced by intermixing-enhanced bulk spin–orbit torque in ferromagnetic multilayers. Applied Physics Reviews, 2022, 9, .	11.3	13
87	Quantitative evaluation of reliability and performance for STT-MRAM. , 2016, , .		12
88	PRESCOTT: Preset-based cross-point architecture for spin-orbit-torque magnetic random access memory. , 2017, , .		12
89	SPINBIS: Spintronics-Based Bayesian Inference System With Stochastic Computing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 789-802.	2.7	12
90	Reliability and performance evaluation for STT-MRAM under temperature variation. , 2016, , .		11

WANG KANG

#	Article	IF	CITATIONS
91	Radiation-Hardening Techniques for Spin Orbit Torque-MRAM Peripheral Circuitry. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	11
92	CORN: In-Buffer Computing for Binary Neural Network. , 2019, , .		11
93	A Comparative Study on Racetrack Memories: Domain Wall vs. Skyrmion. , 2018, , .		10
94	Addressing Failure and Aging Degradation in MRAM/MeRAM-on-FDSOI Integration. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 239-250.	5.4	10
95	An Adaptive Thermal-Aware ECC Scheme for Reliable STT-MRAM LLC Design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1851-1860.	3.1	10
96	An STT-MRAM Based in Memory Architecture for Low Power Integral Computing. IEEE Transactions on Computers, 2019, 68, 617-623.	3.4	10
97	Negative Capacitance Enhanced All Spin Logic Devices With an Ultra-Low 1 mV Working Voltage. IEEE Journal of the Electron Devices Society, 2018, 6, 245-249.	2.1	9
98	Evaluation of Ultrahigh-Speed Magnetic Memories Using Field-Free Spin–Orbit Torque. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	9
99	Toward Energy-Efficient STT-MRAM Design With Multi-Modes Reconfiguration. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2633-2639.	3.0	9
100	Surface acoustic wave controlled skyrmion-based synapse devices. Nanotechnology, 2022, 33, 115205.	2.6	9
101	Anomalous Thermal-Assisted Spin–Orbit Torque-Induced Magnetization Switching for Energy-Efficient Logic-in-Memory. ACS Nano, 2022, 16, 8264-8272.	14.6	9
102	SER analysis and power allocation for hybrid cooperative transmission system. Journal of Systems Engineering and Electronics, 2012, 23, 661-670.	2.2	8
103	Shift-Limited Sort: Optimizing Sorting Performance on Skyrmion Memory-Based Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 4115-4128.	2.7	8
104	3D Ferrimagnetic Device for Multi-Bit Storage and Efficient In-Memory Computing. IEEE Electron Device Letters, 2021, 42, 152-155.	3.9	8
105	A Fast and Power-Efficient Hardware Architecture for Visual Feature Detection in Affine-SIFT. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3362-3375.	5.4	7
106	Complementary Skyrmion Racetrack Memory Enables Voltage-Controlled Local Data Update Functionality. IEEE Transactions on Electron Devices, 2018, 65, 4667-4673.	3.0	7
107	Sky-RAM: Skyrmionic Random Access Memory. IEEE Electron Device Letters, 2019, 40, 722-725.	3.9	7
108	A Novel High Performance and Energy Efficient NUCA Architecture for STT-MRAM LLCs With Thermal Consideration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 803-815.	2.7	7

#	Article	IF	CITATIONS
109	Novel Magnetic Tunneling Junction Memory Cell With Negative Capacitance-Amplified Voltage-Controlled Magnetic Anisotropy Effect. IEEE Transactions on Electron Devices, 2017, 64, 4919-4927.	3.0	6
110	A spin orbit torque based true random number generator with real-time optimization. , 2018, , .		6
111	A Full-Sensing-Margin Dual-Reference Sensing Scheme for Deeply-Scaled STT-RAM. IEEE Access, 2018, 6, 64250-64260.	4.2	6
112	Enhancement of Perpendicular Magnetic Anisotropy Through Fe Insertion at the CoFe/W Interface. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	6
113	Dynamics of Magnetic Skyrmion Clusters Driven by Spin-Polarized Current With a Spatially Varied Polarization. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	6
114	SpinLiM: Spin Orbit Torque Memory for Ternary Neural Networks Based on the Logic-in-Memory Architecture. , 2021, , .		6
115	Ultrafast and Energy-Efficient Ferrimagnetic XNOR Logic Gates for Binary Neural Networks. IEEE Electron Device Letters, 2021, 42, 621-624.	3.9	6
116	Efficient Magnetic Domain Nucleation and Domain Wall Motion With Voltage Control Magnetic Anisotropy Effect and Antiferromagnetic/Ferromagnetic Coupling. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	5
117	Spintronic Memories: From Memory to Computing-in-Memory. , 2019, , .		5
118	An STT-MRAM based reconfigurable computing-in-memory architecture for general purpose computing. CCF Transactions on High Performance Computing, 2020, 2, 272-281.	1.7	5
119	Hardware Security in Spin-based Computing-in-memory. ACM Journal on Emerging Technologies in Computing Systems, 2020, 16, 1-18.	2.3	5
120	A Spintronic In-Memory Computing Network for Efficient Hamming Codec Implementation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2086-2090.	3.0	5
121	Compact modeling of high spin transfer torque efficiency double-barrier magnetic tunnel junction. , 2017, , .		4
122	High-Density and Fast-Configuration Non-Volatile Look-Up Table Based on NAND-Like Spintronic Memory. , 2018, , .		4
123	Proposal for Multi-Gate Spin Field-Effect Transistor. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	4
124	Magnetic Skyrmion Spectrum Under Voltage Excitation and its Linear Modulation. Physical Review Applied, 2019, 12, .	3.8	4
125	Compact Model for Negative Capacitance Enhanced Spintronics Devices. IEEE Transactions on Electron Devices, 2019, 66, 2795-2801.	3.0	4
126	Efficient Time-Domain In-Memory Computing Based on TST-MRAM. , 2020, , .		4

8

#	Article	IF	CITATIONS
127	High-Density, Low-Power Voltage-Control Spin Orbit Torque Memory with Synchronous Two-Step Write and Symmetric Read Techniques. , 2020, , .		4
128	Erase-Hidden and Drivability-Improved Magnetic Non-Volatile Flip-Flops With NAND-SPIN Devices. IEEE Nanotechnology Magazine, 2020, 19, 446-454.	2.0	4
129	One-step majority-logic-decodable codes enable STT-MRAM for high speed working memories. , 2014, , .		3
130	Correlation of interfacial perpendicular magnetic anisotropy and interlayer exchange coupling in CoFe/W/CoFe structures. Journal Physics D: Applied Physics, 2020, 53, 334001.	2.8	3
131	A Novel In-memory Computing Scheme Based on Toggle Spin Torque MRAM. , 2020, , .		3
132	Advanced Spin Orbit Torque Magnetic Random Access Memory with Field-Free Switching Schemes (Invited). , 2020, , .		3
133	A Computing-in-memory Scheme with Series Bit-cell in STT-MRAM for Efficient Multi-bit Analog Multiplication. , 2021, , .		3
134	Linear Error Correction Codec Implementation Based on an In-Memory Computing Architecture for Nonvolatile Memories. IEEE Transactions on Electron Devices, 2022, 69, 3455-3461.	3.0	3
135	A Mini Tutorial of Processing in Memory: From Principles, Devices to Prototypes. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3044-3050.	3.0	3
136	SpinCIM: spin orbit torque memory for ternary neural networks based on the computing-in-memory architecture. CCF Transactions on High Performance Computing, 0, , .	1.7	3
137	ZFTL: A Zone-based Flash Translation Layer with a two-tier selective caching mechanism. , 2012, , .		2
138	Improving flash memory reliability with dynamic thresholds: Signal processing and coding schemes. , 2012, , .		2
139	Amplitude and frequency modulation based on memristor-controlled spin nano-oscillators. Nanotechnology, 2020, 31, 045202.	2.6	2
140	Computing-in-Memory Paradigm Based on STT-MRAM with Synergetic Read/Write-Like Modes. , 2021, , .		2
141	Variability Study of Toggle Spin Torques Magnetic Random Access Memory. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	2
142	A novel reader anti-collision protocol using Priority Cluster for dense reader RFID system. , 2011, , .		1
143	Thermosiphon: A thermal aware NUCA architecture for write energy reduction of the STT-MRAM based LLCs. , 2017, , .		1
144	Micromagnetic Simulation of Spin-Orbit Torque Induced Ultrafast Switching of In-Plane Magnetization. , 2018, , .		1

#	Article	IF	CITATIONS
145	PRISM: Energy-Efficient Polymorphic Operation Based on Spin-Orbit Torque Memory for Reconfigurable Computing. , 2020, , .		1
146	Nonvolatile NULL Convention Logic Pipeline Using Magnetic Tunnel Junctions. IEEE Nanotechnology Magazine, 2021, 20, 703-707.	2.0	1
147	Novel Nonvolatile Lookup Table Design Based on Voltage-Controlled Spin Orbit Torque Memory. IEEE Transactions on Electron Devices, 2022, 69, 1677-1682.	3.0	1
148	Ring-shaped content addressable memory based on spin orbit torque driven chiral domain wall motions. , 2019, , .		0
149	HSC: A Hybrid Spin/CMOS Logic Based In-Memory Engine with Area-Efficient Mapping Strategy. , 2021, , .		0
150	An In-memory Highly Reconfigurable Logic Circuit Based on Diode-assisted Enhanced Magnetoresistance Device. , 2020, , .		0
151	Foreword Special Issue on Spintronics-Devices and Circuits. IEEE Transactions on Electron Devices, 2022, 69, 1622-1628.	3.0	0
152	Granularity-Driven Management for Reliable and Efficient Skyrmion Racetrack Memories. IEEE Transactions on Emerging Topics in Computing, 2023, 11, 95-111.	4.6	0