List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/391326/publications.pdf Version: 2024-02-01

Ιμανιμαν Εενις

#	Article	IF	CITATIONS
1	Au nanoparticles as a novel coating for solid-phase microextraction. Journal of Chromatography A, 2010, 1217, 8079-8086.	3.7	132
2	Recent advances of ionic liquids in sample preparation. TrAC - Trends in Analytical Chemistry, 2020, 125, 115833.	11.4	118
3	Recent advances of covalent organic frameworks for solid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2021, 137, 116208.	11.4	102
4	A novel silver-coated solid-phase microextraction metal fiber based on electroless plating technique. Analytica Chimica Acta, 2011, 701, 174-180.	5.4	95
5	Graphene oxide bonded fusedâ€silica fiber for solidâ€phase microextractionâ€gas chromatography of polycyclic aromatic hydrocarbons in water. Journal of Separation Science, 2012, 35, 93-100.	2.5	92
6	lonic liquid-functionalized silica aerogel as coating for solid-phase microextraction. Journal of Chromatography A, 2019, 1583, 48-54.	3.7	82
7	A novel aromatically functional polymeric ionic liquid as sorbent material for solid-phase microextraction. Journal of Chromatography A, 2012, 1227, 54-59.	3.7	72
8	Preparation of a polymeric ionic liquid-coated solid-phase microextraction fiber by surface radical chain-transfer polymerization with stainless steel wire as support. Journal of Chromatography A, 2011, 1218, 7758-7764.	3.7	67
9	Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction. Journal of Chromatography A, 2017, 1517, 209-214.	3.7	53
10	Highly sensitive copper fiber-in-tube solid-phase microextraction for online selective analysis of polycyclic aromatic hydrocarbons coupled with high performance liquid chromatography. Journal of Chromatography A, 2015, 1408, 41-48.	3.7	52
11	Melamine-formaldehyde aerogel functionalized with polydopamine as in-tube solid-phase microextraction coating for the determination of phthalate esters. Talanta, 2019, 199, 317-323.	5.5	50
12	Ionic liquids-based crosslinked copolymer sorbents for headspace solid-phase microextraction of polar alcohols. Journal of Chromatography A, 2012, 1245, 32-38.	3.7	48
13	CNT–TiO2 coating bonded onto stainless steel wire as a novel solid-phase microextraction fiber. Talanta, 2013, 114, 60-65.	5.5	46
14	Facile modification of multi-walled carbon nanotubes–polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange. Journal of Chromatography A, 2015, 1393, 8-17.	3.7	45
15	An ionic-liquid-modified melamine-formaldehyde aerogel for in-tube solid-phase microextraction of estrogens followed by high performance liquid chromatography with diode array detection. Mikrochimica Acta, 2019, 186, 769.	5.0	45
16	An organically modified silica aerogel for online in-tube solid-phase microextraction. Journal of Chromatography A, 2017, 1517, 203-208.	3.7	44
17	Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction. Talanta, 2016, 148, 313-320.	5.5	43
18	Novel double-confined polymeric ionic liquids as sorbents for solid-phase microextraction with enhanced stability and durability in high-ionic-strength solution. Journal of Chromatography A, 2012, 1268, 16-21.	3.7	42

#	Article	IF	CITATIONS
19	Multiwalled carbon nanotubes-doped polymeric ionic liquids coating for multiple headspace solid-phase microextraction. Talanta, 2014, 123, 18-24.	5.5	42
20	Ionic liquid coated copper wires and tubes for fiber-in-tube solid-phase microextraction. Journal of Chromatography A, 2016, 1458, 1-8.	3.7	40
21	Graphene coating bonded onto stainless steel wire as a solid-phase microextraction fiber. Talanta, 2015, 134, 200-205.	5.5	39
22	A solid-phase microextraction fiber with carbon nanoparticles as sorbent material prepared by a simple flame-based preparation process. Journal of Chromatography A, 2013, 1300, 173-179.	3.7	38
23	Development of a functionalized polymeric ionic liquid monolith for solid-phase microextraction of polar endocrine disrupting chemicals in aqueous samples coupled to high-performance liquid chromatography. Analytical and Bioanalytical Chemistry, 2015, 407, 7025-7035.	3.7	38
24	Graphene oxide reinforced polymeric ionic liquid monolith solidâ€phase microextraction sorbent for highâ€performance liquid chromatography analysis of phenolic compounds in aqueous environmental samples. Journal of Separation Science, 2016, 39, 375-382.	2.5	36
25	Dipyridine modified silica—A novel multi-interaction stationary phase for high performance liquid chromatography A, 2011, 1218, 3743-3749.	3.7	35
26	Facile and efficient poly(ethylene terephthalate) fibers-in-tube for online solid-phase microextraction towards polycyclic aromatic hydrocarbons. Analytical and Bioanalytical Chemistry, 2016, 408, 4871-4882.	3.7	35
27	Polydopamine supported preparation method for solid-phase microextraction coatings on stainless steel wire. Journal of Chromatography A, 2011, 1218, 3601-3607.	3.7	32
28	Benzimidazole modified silica as a novel reversed-phase and anion-exchange mixed-mode stationary phase for HPLC. Talanta, 2013, 105, 135-141.	5.5	32
29	Dicationic imidazolium ionic liquid modified silica as a novel reversed-phase/anion-exchange mixed-mode stationary phase for high-performance liquid chromatography. Journal of Separation Science, 2014, 37, 2153-2159.	2.5	32
30	Ionic liquid chemically bonded basalt fibers for inâ€ŧube solidâ€phase microextraction. Journal of Separation Science, 2018, 41, 1839-1846.	2.5	31
31	An organic-inorganic hybrid silica aerogel prepared by co-precursor method for solid-phase microextraction coating. Talanta, 2019, 194, 370-376.	5.5	31
32	Recent advances in micro- and nanomaterial-based adsorbents for pipette-tip solid-phase extraction. Mikrochimica Acta, 2021, 188, 189.	5.0	30
33	Development of aerogels in solid-phase extraction and microextraction. TrAC - Trends in Analytical Chemistry, 2022, 146, 116497.	11.4	30
34	Silk fiber for in-tube solid-phase microextraction to detect aldehydes by chemical derivatization. Journal of Chromatography A, 2017, 1522, 16-22.	3.7	29
35	Dendritic mesoporous silica nanospheres@porous carbon for in-tube solid-phase microextraction to detect polycyclic aromatic hydrocarbons in tea beverages. Food Chemistry, 2021, 364, 130379.	8.2	29
36	In situ hydrothermal growth of polyaniline coating for in-tube solid-phase microextraction towards ultraviolet filters in environmental water samples. Journal of Chromatography A, 2017, 1483, 48-55.	3.7	28

#	Article	IF	CITATIONS
37	Melamine–formaldehyde aerogel coating for in-tube solid-phase microextraction. Journal of Chromatography A, 2018, 1577, 8-14.	3.7	28
38	Preparation of metal wire supported solidâ€phase microextraction fiber coated with multiâ€walled carbon nanotubes. Journal of Separation Science, 2011, 34, 2482-2488.	2.5	27
39	Hollow fiber membrane-coated functionalized polymeric ionic liquid capsules for direct analysis of estrogens in milk samples. Analytical and Bioanalytical Chemistry, 2016, 408, 1679-1685.	3.7	26
40	Poly(ionic liquid)-hybridized silica aerogel for solid-phase microextraction of polycyclic aromatic hydrocarbons prior to gas chromatography-flame ionization detection. Mikrochimica Acta, 2021, 188, 96.	5.0	25
41	Nanostructuredâ€silverâ€coated polyetheretherketone tube for online inâ€tube solidâ€phase microextraction coupled with highâ€performance liquid chromatography. Journal of Separation Science, 2015, 38, 3239-3246.	2.5	24
42	Co-Al bimetallic hydroxide nanocomposites coating for online in-tube solid-phase microextraction. Journal of Chromatography A, 2018, 1550, 1-7.	3.7	24
43	Basalt fibers grafted with a poly(ionic liquids) coating for inâ€ŧube solidâ€phase microextraction. Journal of Separation Science, 2018, 41, 3267-3274.	2.5	24
44	Polyaniline/titanium dioxide nanorods functionalized carbon fibers for in-tube solid-phase microextraction of phthalate esters prior to high performance liquid chromatography-diode array detection. Journal of Chromatography A, 2021, 1642, 462003.	3.7	23
45	Poly(ionic liquids)â€coated stainlessâ€steel wires packed into a polyether ether ketone tube for inâ€ŧube solidâ€phase microextraction. Journal of Separation Science, 2017, 40, 4773-4779.	2.5	22
46	A Nanospherical Metal–Organic Framework UiO-66 for Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Chromatographia, 2018, 81, 1053-1061.	1.3	21
47	In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons. Analytical and Bioanalytical Chemistry, 2017, 409, 4071-4078.	3.7	20
48	Basalt fibers coated with nano-calcium carbonate for in-tube solid-phase microextraction and online analysis of estrogens coupled with high-performance liquid chromatography. Analytical Methods, 2018, 10, 2234-2241.	2.7	20
49	Graphene oxide-functionalized mesoporous silica for online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from honey and detection by high performance liquid chromatography-diode array detector. Microchemical Journal, 2021, 166, 106263.	4.5	19
50	A novel chemiluminescence sensor for determination of vanillin with magnetite–graphene oxide molecularly imprinted polymers. Analytical Methods, 2014, 6, 8706-8712.	2.7	18
51	Nanostructured copper-coated solid-phase microextraction fiber for gas chromatographic analysis of dibutyl phthalate and diethylhexyl phthalate environmental estrogens. Journal of Separation Science, 2015, 38, 128-133.	2.5	18
52	Polydopamineâ€coated cotton fibers as the adsorbent for inâ€tube solidâ€phase microextraction. Journal of Separation Science, 2019, 42, 2163-2170.	2.5	18
53	Bare polyprolylene hollow fiber as extractive phase for inâ€tube solidâ€phase microextraction to determine estrogens in water samples. Journal of Separation Science, 2019, 42, 2398-2406.	2.5	17
54	Triazine-based covalent porous organic polymer for the online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons prior to high-performance liquid chromatography-diode array detection. Journal of Chromatography A, 2021, 1641, 462004.	3.7	17

#	Article	IF	CITATIONS
55	Goldâ€functionalized stainlessâ€steel wire and tube for fiberâ€inâ€tube solidâ€phase microextraction coupled to highâ€performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons. Journal of Separation Science, 2016, 39, 932-938.	2.5	16
56	Development of a carbonâ€nanoparticleâ€coated stirrer for stir bar sorptive extraction by a simple carbon deposition in flame. Journal of Separation Science, 2016, 39, 918-922.	2.5	16
57	Mesoporous titanium oxide with highâ€specific surface area as a coating for inâ€tube solidâ€phase microextraction combined with highâ€performance liquid chromatography for the analysis of polycyclic aromatic hydrocarbons. Journal of Separation Science, 2017, 40, 2474-2481.	2.5	16
58	Basalt fibers functionalized with gold nanoparticles for inâ€ŧube solidâ€phase microextraction. Journal of Separation Science, 2018, 41, 1149-1155.	2.5	16
59	Triazineâ€based organic polymers@SiO ₂ nanospheres for sensitive solidâ€phase microextraction of polycyclic aromatic hydrocarbons. Journal of Separation Science, 2020, 43, 622-630.	2.5	16
60	Diamond nanoparticles coating for inâ€ŧube solidâ€phase microextraction to detect polycyclic aromatic hydrocarbons. Journal of Separation Science, 2018, 41, 4480-4487.	2.5	15
61	Carbonized cotton fibers via a facile method for highly sensitive solidâ€phase microextraction of polycyclic aromatic hydrocarbons. Journal of Separation Science, 2019, 42, 2155-2162.	2.5	15
62	Silicon carbide nanomaterial as a coating for solidâ€phase microextraction. Journal of Separation Science, 2018, 41, 1995-2002.	2.5	14
63	A silica aerogel as an extractive coating for in-tube solid-phase microextraction to determine polycyclic aromatic hydrocarbons in water samples. Analytical Methods, 2019, 11, 5784-5792.	2.7	14
64	Recent Advances of Triazine-Based Materials for Adsorbent Based Extraction Techniques. Topics in Current Chemistry, 2021, 379, 24.	5.8	14
65	Development of a solidâ€phase microextraction fiber by the chemical binding of graphene oxide on a silverâ€coated stainlessâ€steel wire with an ionic liquid as the crosslinking agent. Journal of Separation Science, 2014, 37, 3691-3698.	2.5	13
66	Application of biocharcoal aerogel sorbent for solidâ€phase microextraction of polycyclic aromatic hydrocarbons in water samples. Journal of Separation Science, 2020, 43, 4364-4373.	2.5	13
67	Nanoâ€MoO ₃ for highly selective enrichment of polycyclic aromatic hydrocarbons in inâ€ŧube solidâ€phase microextraction. Journal of Separation Science, 2019, 42, 3363-3371.	2.5	12
68	Biochar nanosphere- and covalent organic framework nanosphere-functionalized titanium dioxide nanorod arrays on carbon fibers for solid-phase microextraction of organic pollutants. Chemical Engineering Journal, 2022, 433, 133645.	12.7	12
69	Polyurethane functionalized silica aerogel for in-tube solid-phase microextraction of estrogens prior to high performance liquid chromatography detection. Microchemical Journal, 2022, 181, 107699.	4.5	12
70	Corncob biochar as a coating for trace analysis of polycyclic aromatic hydrocarbons in water samples by online in-tube solid-phase microextraction coupled to high performance liquid chromatography. Microchemical Journal, 2020, 159, 105399.	4.5	11
71	Improvement of the chromatographic separation performance of an imidazolium ionic liquid functionalized silica column by <i>inÂsitu</i> anionâ€exchange with dodecyl sulfonate and dodecylbenzene sulfonate anions. Journal of Separation Science, 2014, 37, 1283-1288.	2.5	10
72	Palladiumâ€coated stainlessâ€steel wire as a solidâ€phase microextraction fiber. Journal of Separation Science, 2015, 38, 1584-1590.	2.5	9

#	Article	IF	CITATIONS
73	Application of Covalent Organic Porous Polymers-Functionalized Basalt Fibers for in-Tube Solid-Phase Microextraction. Molecules, 2020, 25, 5788.	3.8	9
74	Barium Sulfate Nanoparticles as a Coating for Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons in Aqueous Samples. Chromatographia, 2018, 81, 1287-1292.	1.3	8
75	Carbonized silk fibers for inâ€ŧube solidâ€phase microextraction to detect polycyclic aromatic hydrocarbons in water samples. Journal of Separation Science, 2019, 42, 3535-3543.	2.5	8
76	Melamine–Formaldehyde Aerogel Doped with Boron Nitride Nanosheets as the Coating of In-Tube Solid-Phase Microextraction. Chromatographia, 2019, 82, 757-766.	1.3	8
77	Carbon nanotubes functionalized mesoporous silica for inâ€tube solidâ€phase microextraction of polycyclic aromatic hydrocarbons. Journal of Separation Science, 2020, 43, 3275-3284.	2.5	8
78	A melamine–formaldehyde-resorcinol aerogel as the sorbent of in-tube solid-phase microextraction. Microchemical Journal, 2020, 159, 105573.	4.5	7
79	A silver fibre prepared by a facile method for solid-phase microextraction of polycyclic aromatic hydrocarbons. Environmental Chemistry, 2017, 14, 451.	1.5	6
80	Mesoporous silica hybridized by ordered mesoporous carbon for inâ€ŧube solidâ€phase microextraction. Journal of Separation Science, 2020, 43, 3655-3664.	2.5	6
81	Extraction performance-structure relationship of polyamidoamine dendrimers on silica for online solid-phase extraction of organic pollutants. Journal of Chromatography A, 2022, 1673, 463132.	3.7	5
82	Nanostructured Silver Coating as a Stationary Phase for Capillary Gas Chromatography. Molecules, 2019, 24, 4491.	3.8	4
83	A green extraction material — natural cotton fiber for inâ€ŧube solidâ€phase microextraction. Journal of Separation Science, 2019, 42, 1051-1057.	2.5	2
84	Carbon fibers modified with carbon nanoparticles by a facile and fast flame preparation for in-tube solid-phase microextraction. Arabian Journal of Chemistry, 2021, , 103537.	4.9	2
85	Silica Aerogel Hybridized with Melamine-Terephthalaldehyde Polymer for In-Tube Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons from Environment Water. Nanomaterials, 2022, 12, 1766.	4.1	0