
Marie-Gabrielle Zurich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3912856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroinflammatory Response to TNFα and IL1β Cytokines Is Accompanied by an Increase in Glycolysis in Human Astrocytes In Vitro. International Journal of Molecular Sciences, 2021, 22, 4065.	4.1	13
2	Human IPSC-Derived Model to Study Myelin Disruption. International Journal of Molecular Sciences, 2021, 22, 9473.	4.1	28
3	Quantification of Oligodendrocytes and Myelin in Human iPSC-Derived 3D Brain Cell Cultures (BrainSpheres). Neuromethods, 2021, , 459-471.	0.3	Ο
4	Organotypic Models to Study Human Glioblastoma: Studying the Beast in Its Ecosystem. IScience, 2020, 23, 101633.	4.1	12
5	Antidepressant Paroxetine Exerts Developmental Neurotoxicity in an iPSC-Derived 3D Human Brain Model. Frontiers in Cellular Neuroscience, 2020, 14, 25.	3.7	47
6	Neurotoxicology and Disease Modelling. Learning Materials in Biosciences, 2020, , 229-246.	0.4	1
7	Model-based estimation of lowest observed effect concentration from replicate experiments to identify potential biomarkers of in vitro neurotoxicity. Archives of Toxicology, 2019, 93, 2635-2644.	4.2	1
8	Protein pathway analysis to study development-dependent effects of acute and repeated trimethyltin (TMT) treatments in 3D rat brain cell cultures. Toxicology in Vitro, 2019, 60, 281-292.	2.4	5
9	Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology, 2018, 354, 3-6.	2.8	90
10	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	1.5	121
11	Longitudinal investigation of the metabolome of 3D aggregating brain cell cultures at different maturation stages by 1H HR-MAS NMR. Analytical and Bioanalytical Chemistry, 2018, 410, 6733-6749.	3.7	6
12	Challenges in using markers of neuroinflammation for hazard identification. Toxicology Letters, 2017, 280, S14.	0.8	0
13	Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicology in Vitro, 2015, 30, 138-165.	2.4	75
14	Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures. Toxicology in Vitro, 2015, 30, 192-202.	2.4	21
15	Cell type-specific expression and localization of cytochrome P450 isoforms in tridimensional aggregating rat brain cell cultures. Toxicology in Vitro, 2015, 30, 176-184.	2.4	7
16	Cyclosporine A kinetics in brain cell cultures and its potential of crossing the blood–brain barrier. Toxicology in Vitro, 2015, 30, 166-175.	2.4	20
17	The in vitro biokinetics of chlorpromazine and diazepam in aggregating rat brain cell cultures after repeated exposure. Toxicology in Vitro, 2015, 30, 185-191.	2.4	4
18	Repeated exposure to Ochratoxin A generates a neuroinflammatory response, characterized by neurodegenerative M1 microglial phenotype. NeuroToxicology, 2014, 44, 61-70.	3.0	19

#	Article	IF	CITATIONS
19	Stochastic timeâ€concentration activity models for cytotoxicity in 3D brain cell cultures. Theoretical Biology and Medical Modelling, 2013, 10, 19.	2.1	2
20	The value of selected in vitro and in silico methods to predict acute oral toxicity in a regulatory context: Results from the European Project ACuteTox. Toxicology in Vitro, 2013, 27, 1357-1376.	2.4	31
21	Evaluation of aggregating brain cell cultures for the detection of acute organ-specific toxicity. Toxicology in Vitro, 2013, 27, 1416-1424.	2.4	41
22	Minocycline promotes remyelination in aggregating rat brain cell cultures after interferon-Î ³ plus lipopolysaccharide-induced demyelination. Neuroscience, 2011, 187, 84-92.	2.3	42
23	Ochratoxin A at nanomolar concentration perturbs the homeostasis of neural stem cells in highly differentiated but not in immature three-dimensional brain cell cultures. Toxicology Letters, 2011, 205, 203-208.	0.8	16
24	Methods to Assess Neuroinflammation. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2011, 50, Unit12.19.	1.1	23
25	Preparation, Maintenance, and Use of Serum-Free Aggregating Brain Cell Cultures. Methods in Molecular Biology, 2011, 758, 81-97.	0.9	27
26	Inflammatory responses in aggregating rat brain cell cultures subjected to different demyelinating conditions. Brain Research, 2010, 1353, 213-224.	2.2	20
27	Contribution of in vitro neurotoxicology studies to the elucidation of neurodegenerative processes. Brain Research Bulletin, 2009, 80, 211-216.	3.0	10
28	Neuronal in vitro models for the estimation of acute systemic toxicity. Toxicology in Vitro, 2009, 23, 1564-1569.	2.4	42
29	Effects of the PPAR-β agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination. Journal of Neuroinflammation, 2009, 6, 15.	7.2	38
30	Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures. Toxicology and Applied Pharmacology, 2008, 228, 8-16.	2.8	39
31	Neurotoxicant-induced inflammatory response in three-dimensional brain cell cultures. Human and Experimental Toxicology, 2007, 26, 339-346.	2.2	55
32	Involvement of Environmental Mercury and Lead in the Etiology of Neurodegenerative Diseases. Reviews on Environmental Health, 2006, 21, 105-17.	2.4	122
33	Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience, 2005, 134, 771-782.	2.3	46
34	Regulated exocytosis of an H+/myo-inositol symporter at synapses and growth cones. EMBO Journal, 2004, 23, 531-540.	7.8	60
35	Involvement of glial cells in the neurotoxicity of parathion and chlorpyrifos. Toxicology and Applied Pharmacology, 2004, 201, 97-104.	2.8	75
36	Regulation of peptidase activity in a three-dimensional aggregate model of brain tumor vasculature. Cell and Tissue Research, 2003, 311, 53-59.	2.9	9

Marie-Gabrielle Zurich

#	Article	IF	CITATIONS
37	Ammonium-Induced Impairment of Axonal Growth Is Prevented through Glial Creatine. Journal of Neuroscience, 2002, 22, 9810-9820.	3.6	96
38	Maturation-dependent neurotoxicity of lead acetate in vitro: Implication of glial reactions. Journal of Neuroscience Research, 2002, 70, 108-116.	2.9	50
39	Alteration of amino acid metabolism in neuronal aggregate cultures exposed to hypoglycaemic conditions. Journal of Neurochemistry, 2002, 81, 1141-1151.	3.9	33
40	Maturation-Dependent Effects of Chlorpyrifos and Parathion and Their Oxygen Analogs on Acetylcholinesterase and Neuronal and Glial Markers in Aggregating Brain Cell Cultures. Toxicology and Applied Pharmacology, 2000, 165, 175-183.	2.8	117
41	Lead acetate toxicity in vitro: Dependence on the cell composition of the cultures. Toxicology in Vitro, 1998, 12, 191-196.	2.4	19
42	Comparison of the developmental effects of two mercury compounds on glial cells and neurons in aggregate cultures of rat telencephalon. Brain Research, 1996, 741, 52-59.	2.2	69
43	Microglial responsiveness as a sensitive marker for trimethyltin (TMT) neurotoxicity. Brain Research, 1995, 690, 8-14.	2.2	59
44	Evaluation of the toxicity of different metal compounds in the developing brain using aggregating cell cultures as a model. Toxicology in Vitro, 1993, 7, 335-339.	2.4	19
45	Glial Hyaluronate-Binding Protein Expression in Aggregating Brain Cell Cultures. Developmental Neuroscience, 1993, 15, 395-402.	2.0	7
46	Dose and time effects of treatment with low doses of a LRH agonist on testicular axis and accessory sex organs in rats. European Journal of Endocrinology, 1986, 112, 595-602.	3.7	1