Gerard E Kaiko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3912250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defects in NLRP6, autophagy and goblet cell homeostasis are associated with reduced duodenal CRH receptor 2 expression in patients with functional dyspepsia. Brain, Behavior, and Immunity, 2022, 101, 335-345.	4.1	12
2	<scp>ACE2</scp> expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma. Respirology, 2021, 26, 442-451.	2.3	59
3	T-helper 22 cells develop as a distinct lineage from Th17 cells during bacterial infection and phenotypic stability is regulated by T-bet. Mucosal Immunology, 2021, 14, 1077-1087.	6.0	13
4	Mining the Microbiome and Microbiota-Derived Molecules in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2021, 22, 11243.	4.1	6
5	A Critical Role for the CXCL3/CXCL5/CXCR2 Neutrophilic Chemotactic Axis in the Regulation of Type 2 Responses in a Model of Rhinoviral-Induced Asthma Exacerbation. Journal of Immunology, 2020, 205, 2468-2478.	0.8	31
6	Role of the Intestinal Epithelium and Its Interaction With the Microbiota in Food Allergy. Frontiers in Immunology, 2020, 11, 604054.	4.8	70
7	GSTO1â€l is an upstream suppressor of M2 macrophage skewing and HIFâ€lαâ€induced eosinophilic airway inflammation. Clinical and Experimental Allergy, 2020, 50, 609-624.	2.9	17
8	Late Breaking Abstract - ACE2 expression in lower airway epithelial cells is increased with age and in males, but is less in asthma. , 2020, , .		0
9	Isolation and In Vitro Culture of Human Gut Progenitor Cells. Methods in Molecular Biology, 2019, 2029, 49-62.	0.9	1
10	IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. European Respiratory Journal, 2019, 54, 1800174.	6.7	54
11	PAI-1 augments mucosal damage in colitis. Science Translational Medicine, 2019, 11, .	12.4	44
12	Developments in cystic fibrosis personalised epithelial assays: Science and patient perspectives. Journal of Cystic Fibrosis, 2018, 17, 289-291.	0.7	0
13	Cellular differentiation: Potential insight into butyrate paradox?. Molecular and Cellular Oncology, 2018, 5, e1212685.	0.7	12
14	Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. Journal of Clinical Investigation, 2018, 128, 5110-5122.	8.2	53
15	Th22 Cells Form a Distinct Th Lineage from Th17 Cells In Vitro with Unique Transcriptional Properties and Tbet-Dependent Th1 Plasticity. Journal of Immunology, 2017, 198, 2182-2190.	0.8	106
16	The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science, 2017, 357, 498-502.	12.6	391
17	Modeling <scp>T_H</scp> 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Reviews, 2017, 278, 20-40.	6.0	107
18	Th22 cells develop independently of the Th17 lineage with unique transcriptional properties and plasticity toward Th1-type cells during Influenza infection. , 2017, , .		0

Gerard E Kaiko

#	Article	IF	CITATIONS
19	Harnessing TGF-β and BMP signaling for expansion of p63-positive epithelial stem cells. Stem Cell Investigation, 2016, 3, 82-82.	3.0	3
20	The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell, 2016, 165, 1708-1720.	28.9	484
21	Colitogenic Bacteroides thetaiotaomicron Antigens Access Host Immune Cells in a Sulfatase-Dependent Manner via Outer Membrane Vesicles. Cell Host and Microbe, 2015, 17, 672-680.	11.0	179
22	Antagonism of miR-328 Increases the Antimicrobial Function of Macrophages and Neutrophils and Rapid Clearance of Non-typeable Haemophilus Influenzae (NTHi) from Infected Lung. PLoS Pathogens, 2015, 11, e1004549.	4.7	62
23	Mapping the cellular source and role of IL-22 in murine lung infections. , 2015, , .		0
24	Host–microbe interactions shaping the gastrointestinal environment. Trends in Immunology, 2014, 35, 538-548.	6.8	138
25	Toll-like receptor 7 gene deficiency and early-life Pneumovirus infection interact to predispose toward the development of asthma-like pathology in mice. Journal of Allergy and Clinical Immunology, 2013, 131, 1331-1339.e10.	2.9	59
26	The emerging role of micro <scp>RNA</scp> s in regulating immune and inflammatory responses in the lung. Immunological Reviews, 2013, 253, 198-215.	6.0	97
27	Th2 cytokine antagonists: potential treatments for severe asthma. Expert Opinion on Investigational Drugs, 2013, 22, 49-69.	4.1	76
28	Responses of Airway Epithelium to Environmental Injury: Role in the Induction Phase of Childhood Asthma. Journal of Allergy, 2011, 2011, 1-7.	0.7	5
29	MiRNA And Its Roles In Regulating Bacterial Infection In Lungs. , 2011, , .		Ο
30	New insights into the generation of Th2 immunity and potential therapeutic targets for the treatment of asthma. Current Opinion in Allergy and Clinical Immunology, 2011, 11, 39-45.	2.3	44
31	Cytokine/antiâ€cytokine therapy – novel treatments for asthma?. British Journal of Pharmacology, 2011, 163, 81-95.	5.4	128
32	Plasmacytoid Dendritic Cells Promote Host Defense against Acute Pneumovirus Infection via the TLR7–MyD88-Dependent Signaling Pathway. Journal of Immunology, 2011, 186, 5938-5948.	0.8	80
33	Interleukin-13 Promotes Susceptibility to Chlamydial Infection of the Respiratory and Genital Tracts. PLoS Pathogens, 2011, 7, e1001339.	4.7	68
34	NK Cell Deficiency Predisposes to Viral-Induced Th2-Type Allergic Inflammation via Epithelial-Derived IL-25. Journal of Immunology, 2010, 185, 4681-4690.	0.8	132
35	Toll/IL-1 Signaling Is Critical for House Dust Mite–specific Th1 and Th2 Responses. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 883-893.	5.6	148
36	Immunological decisionâ€making: how does the immune system decide to mount a helper Tâ€cell response?. Immunology, 2008, 123, 326-338.	4.4	584

#	Article	IF	CITATIONS
37	<i>Chlamydia muridarum</i> Infection Subverts Dendritic Cell Function to Promote Th2 Immunity and Airways Hyperreactivity. Journal of Immunology, 2008, 180, 2225-2232.	0.8	61
38	Neonatal Chlamydial Infection Induces Mixed T-Cell Responses That Drive Allergic Airway Disease. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 556-564.	5.6	126