
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3912229/publications.pdf Version: 2024-02-01



FTIENNE LALIBEDTÃO

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A distanceâ€based framework for measuring functional diversity from multiple traits. Ecology, 2010, 91, 299-305.                                                                                                                                                | 1.5 | 2,787     |
| 2  | Conservation of species interaction networks. Biological Conservation, 2010, 143, 2270-2279.                                                                                                                                                                    | 1.9 | 689       |
| 3  | Landâ€use intensification reduces functional redundancy and response diversity in plant communities.<br>Ecology Letters, 2010, 13, 76-86.                                                                                                                       | 3.0 | 476       |
| 4  | Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 2016, 180, 923-931.                                                                                                                                                                | 0.9 | 335       |
| 5  | Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 2017, 355, 173-176.                                                                                                                                          | 6.0 | 299       |
| 6  | Foliar nutrient concentrations and resorption efficiency in plants of contrasting<br>nutrientâ€acquisition strategies along a 2â€millionâ€year dune chronosequence. Journal of Ecology, 2014,<br>102, 396-410.                                                  | 1.9 | 253       |
| 7  | Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science, 2015, 20, 83-90.                                                                                                                                                    | 4.3 | 251       |
| 8  | Environmental filtering explains variation in plant diversity along resource gradients. Science, 2014,<br>345, 1602-1605.                                                                                                                                       | 6.0 | 238       |
| 9  | Proteaceae from severely phosphorusâ€impoverished soils extensively replace phospholipids with<br>galactolipids and sulfolipids during leaf development to achieve a high photosynthetic<br>phosphorusâ€useâ€efficiency. New Phytologist, 2012, 196, 1098-1108. | 3.5 | 225       |
| 10 | Phosphorus limitation, soilâ€borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytologist, 2015, 206, 507-521.                                                                                                  | 3.5 | 222       |
| 11 | Belowâ€ground frontiers in traitâ€based plant ecology. New Phytologist, 2017, 213, 1597-1603.                                                                                                                                                                   | 3.5 | 220       |
| 12 | Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development.<br>Nature Plants, 2015, 1, .                                                                                                                               | 4.7 | 191       |
| 13 | Experimental assessment of nutrient limitation along a 2â€millionâ€year dune chronosequence in the southâ€western Australia biodiversity hotspot. Journal of Ecology, 2012, 100, 631-642.                                                                       | 1.9 | 189       |
| 14 | Biotic plant–soil feedbacks across temporal scales. Journal of Ecology, 2013, 101, 309-315.                                                                                                                                                                     | 1.9 | 184       |
| 15 | Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons To<br>Be Learned for Future Crops?. Plant Physiology, 2011, 156, 1058-1066.                                                                                     | 2.3 | 176       |
| 16 | How does pedogenesis drive plant diversity?. Trends in Ecology and Evolution, 2013, 28, 331-340.                                                                                                                                                                | 4.2 | 165       |
| 17 | Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Annals of Botany, 2012, 110, 329-348.                                                                                        | 1.4 | 149       |
| 18 | How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant and Soil, 2018, 424, 11-33.                                                            | 1.8 | 149       |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Primed for Change: Developing Ecological Restoration for the 21st Century. Restoration Ecology, 2013, 21, 297-304.                                                                                           | 1.4 | 147       |
| 20 | The winners and losers of land use intensification: pollinator community disassembly is nonâ€random and alters functional diversity. Diversity and Distributions, 2014, 20, 908-917.                         | 1.9 | 138       |
| 21 | Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia, 2009, 159, 377-388.                                        | 0.9 | 136       |
| 22 | Low levels of ribosomal <scp>RNA</scp> partly account for the very high photosynthetic<br>phosphorusâ€use efficiency of <scp>P</scp> roteaceae species. Plant, Cell and Environment, 2014, 37,<br>1276-1298. | 2.8 | 121       |
| 23 | Cascading effects of longâ€ŧerm landâ€use changes on plant traits and ecosystem functioning. Ecology,<br>2012, 93, 145-155.                                                                                  | 1.5 | 119       |
| 24 | Deforestation homogenizes tropical parasitoid–host networks. Ecology, 2010, 91, 1740-1747.                                                                                                                   | 1.5 | 113       |
| 25 | Soil Development and Nutrient Availability Along a 2ÂMillion-Year Coastal Dune Chronosequence<br>Under Species-Rich Mediterranean Shrubland in Southwestern Australia. Ecosystems, 2015, 18, 287-309.        | 1.6 | 110       |
| 26 | Which plant traits determine abundance under longâ€ŧerm shifts in soil resource availability and grazing intensity?. Journal of Ecology, 2012, 100, 662-677.                                                 | 1.9 | 107       |
| 27 | Climatic constraints on traitâ€based forest assembly. Journal of Ecology, 2011, 99, 1489-1499.                                                                                                               | 1.9 | 103       |
| 28 | Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. Journal of Vegetation Science, 2013, 24, 834-842.                                       | 1.1 | 88        |
| 29 | Soil fertility shapes belowground food webs across a regional climate gradient. Ecology Letters, 2017, 20, 1273-1284.                                                                                        | 3.0 | 78        |
| 30 | Greater root phosphatase activity in nitrogenâ€fixing rhizobial but not actinorhizal plants with declining phosphorus availability. Journal of Ecology, 2017, 105, 1246-1255.                                | 1.9 | 77        |
| 31 | Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot. , 2013, 1, cot010-cot010.                                              |     | 76        |
| 32 | Complex effects of fragmentation on remnant woodland plant communities of a rapidly urbanizing biodiversity hotspot. Ecology, 2014, 95, 2466-2478.                                                           | 1.5 | 76        |
| 33 | Increasing plant species diversity and extreme species turnover accompany declining soil fertility<br>along a longâ€ŧerm chronosequence in a biodiversity hotspot. Journal of Ecology, 2016, 104, 792-805.   | 1.9 | 76        |
| 34 | AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.                                                                                                           | 2.4 | 73        |
| 35 | Partitioning plant spectral diversity into alpha and beta components. Ecology Letters, 2020, 23, 370-380.                                                                                                    | 3.0 | 62        |
| 36 | Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science, 2020, 369, 1245-1248.                                                                                                  | 6.0 | 57        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogression. Soil Biology and Biochemistry, 2016, 92, 119-132.                                                | 4.2 | 55        |
| 38 | A climosequence of chronosequences in southwestern Australia. European Journal of Soil Science, 2018, 69, 69-85.                                                                                                     | 1.8 | 55        |
| 39 | Native soilborne pathogens equalize differences in competitive ability between plants of contrasting nutrientâ€acquisition strategies. Journal of Ecology, 2017, 105, 549-557.                                       | 1.9 | 52        |
| 40 | The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression.<br>Molecular Ecology, 2015, 24, 4912-4930.                                                                              | 2.0 | 51        |
| 41 | Contrasting patterns of plant and microbial diversity during longâ€ŧerm ecosystem development.<br>Journal of Ecology, 2019, 107, 606-621.                                                                            | 1.9 | 48        |
| 42 | Strong linkage between plant and soil fungal communities along a successional coastal dune system.<br>FEMS Microbiology Ecology, 2016, 92, fiw156.                                                                   | 1.3 | 44        |
| 43 | Biotic and abiotic plant–soil feedback depends on nitrogenâ€acquisition strategy and shifts during<br>longâ€ŧerm ecosystem development. Journal of Ecology, 2019, 107, 142-153.                                      | 1.9 | 41        |
| 44 | Accuracy of 3D Landscape Reconstruction without Ground Control Points Using Different UAS<br>Platforms. Drones, 2020, 4, 13.                                                                                         | 2.7 | 41        |
| 45 | Plasticity in root symbioses following shifts in soil nutrient availability during longâ€ŧerm ecosystem development. Journal of Ecology, 2019, 107, 633-649.                                                         | 1.9 | 40        |
| 46 | Changes in ectomycorrhizal fungal community composition and declining diversity along a<br>2â€millionâ€year soil chronosequence. Molecular Ecology, 2016, 25, 4919-4929.                                             | 2.0 | 35        |
| 47 | Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species. Ecology, 2020, 101, e03090.                                                                            | 1.5 | 35        |
| 48 | Shifts in symbiotic associations in plants capable of forming multiple root symbioses across a<br>longâ€ŧerm soil chronosequence. Ecology and Evolution, 2016, 6, 2368-2377.                                         | 0.8 | 33        |
| 49 | Soil abiotic and biotic properties constrain the establishment of a dominant temperate tree into boreal forests. Journal of Ecology, 2020, 108, 931-944.                                                             | 1.9 | 33        |
| 50 | High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. Plant and Soil, 2018, 424, 255-271.                                                                  | 1.8 | 31        |
| 51 | Temperate Forests Dominated by Arbuscular or Ectomycorrhizal Fungi Are Characterized by Strong<br>Shifts from Saprotrophic to Mycorrhizal Fungi with Increasing Soil Depth. Microbial Ecology, 2021,<br>82, 377-390. | 1.4 | 28        |
| 52 | A shift from phenol to silicaâ€based leaf defences during longâ€ŧerm soil and ecosystem development.<br>Ecology Letters, 2021, 24, 984-995.                                                                          | 3.0 | 27        |
| 53 | ANALYZING OR EXPLAINING BETA DIVERSITY? COMMENT. Ecology, 2008, 89, 3232-3237.                                                                                                                                       | 1.5 | 25        |
| 54 | High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecology and Evolution, 2016, 6, 349-362.                                              | 0.8 | 21        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A long-term experimental test of the dynamic equilibrium model of species diversity. Oecologia, 2013, 171, 439-448.                                                                                       | 0.9 | 20        |
| 56 | Silicon Dynamics During 2 Million Years of Soil Development in a Coastal Dune Chronosequence<br>Under a Mediterranean Climate. Ecosystems, 2020, 23, 1614-1630.                                           | 1.6 | 20        |
| 57 | Toward more robust plant–soil feedback research: Comment. Ecology, 2019, 100, e02590.                                                                                                                     | 1.5 | 19        |
| 58 | Phosphorus―and nitrogenâ€acquisition strategies in two Bossiaea species (Fabaceae) along<br>retrogressive soil chronosequences in southâ€western Australia. Physiologia Plantarum, 2018, 163,<br>323-343. | 2.6 | 18        |
| 59 | Plant beta-diversity across biomes captured by imaging spectroscopy. Nature Communications, 2022, 13, 2767.                                                                                               | 5.8 | 18        |
| 60 | Optimizing Hardwood Reforestation in Old Fields: The Effects of Treeshelters and Environmental Factors on Tree Seedling Growth and Physiology. Restoration Ecology, 2008, 16, 270-280.                    | 1.4 | 17        |
| 61 | Effects of fragmentation on the plant functional composition and diversity of remnant woodlands in a young and rapidly expanding city. Journal of Vegetation Science, 2018, 29, 285-296.                  | 1.1 | 16        |
| 62 | Mycorrhizal dominance reduces local tree species diversity across US forests. Nature Ecology and Evolution, 2022, 6, 370-374.                                                                             | 3.4 | 15        |
| 63 | Spatiotemporal patterns in seedling emergence and early growth of two oak species direct-seeded on abandoned pastureland. Annals of Forest Science, 2008, 65, 407-407.                                    | 0.8 | 14        |
| 64 | Nutrient limitation along the Jurien Bay dune chronosequence: response to Uren & Parsons ().<br>Journal of Ecology, 2013, 101, 1088-1092.                                                                 | 1.9 | 14        |
| 65 | Foliar Spectra and Traits of Bog Plants across Nitrogen Deposition Gradients. Remote Sensing, 2020, 12, 2448.                                                                                             | 1.8 | 13        |
| 66 | Comparison of Two Sampling Methods for Quantifying Changes in Vegetation Composition Under Rangeland Development. Rangeland Ecology and Management, 2010, 63, 537-545.                                    | 1.1 | 11        |
| 67 | Foliar sampling with an unmanned aerial system (UAS) reveals spectral and functional trait differences within tree crowns. Canadian Journal of Forest Research, 2020, 50, 966-974.                        | 0.8 | 11        |
| 68 | Soil microbial communities are driven by the declining availability of cations and phosphorus during ecosystem retrogression. Soil Biology and Biochemistry, 2021, 163, 108430.                           | 4.2 | 10        |
| 69 | Symbiotic N2-Fixer Community Composition, but Not Diversity, Shifts in Nodules of a Single Host<br>Legume Across a 2-Million-Year Dune Chronosequence. Microbial Ecology, 2018, 76, 1009-1020.            | 1.4 | 9         |
| 70 | LAC CROCHE UNDERSTORY VEGETATION DATA SET (1998–2006). Ecology, 2007, 88, 3209-3209.                                                                                                                      | 1.5 | 7         |
| 71 | Estimating Litter Decomposition Rate in Single-Pool Models Using Nonlinear Beta Regression. PLoS ONE, 2012, 7, e45140.                                                                                    | 1.1 | 7         |
| 72 | Ectomycorrhizal Stands Accelerate Decomposition to a Greater Extent than Arbuscular Mycorrhizal<br>Stands in a Northern Deciduous Forest. Ecosystems, 2022, 25, 1234-1248.                                | 1.6 | 7         |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Variations in accuracy of leaf functional trait prediction due to spectral mixing. Ecological<br>Indicators, 2022, 136, 108687.                                     | 2.6 | 7         |
| 74 | BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. Research Ideas and Outcomes, 0, 7, .               | 1.0 | 5         |
| 75 | Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences. Biogeochemistry, 2021, 156, 335-350. | 1.7 | 4         |
| 76 | A test of the Janzenâ€Connell hypothesis in a speciesâ€rich Mediterranean woodland. Ecosphere, 2021, 12,<br>e03821.                                                 | 1.0 | 3         |
| 77 | Etienne Laliberté. New Phytologist, 2017, 213, 1580-1581.                                                                                                           | 3.5 | 1         |