DarÃ-o G Lupiáñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3911150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell adhesion and immune response, two main functions altered in the transcriptome of seasonally regressed testes of two mammalian species. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 231-244.	1.3	1
2	In vivo dissection of a clustered-CTCF domain boundary reveals developmental principles of regulatory insulation. Nature Genetics, 2022, 54, 1026-1036.	21.4	34
3	The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science, 2020, 370, 208-214.	12.6	41
4	Order and disorder: abnormal 3D chromatin organization in human disease. Briefings in Functional Genomics, 2020, 19, 128-138.	2.7	44
5	A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps. Genes, 2019, 10, 415.	2.4	9
6	GOPHER: Generator Of Probes for capture Hi-C Experiments at high Resolution. BMC Genomics, 2019, 20, 40.	2.8	10
7	Structural variation in the 3D genome. Nature Reviews Genetics, 2018, 19, 453-467.	16.3	508
8	Polymer physics predicts the effects of structural variants on chromatin architecture. Nature Genetics, 2018, 50, 662-667.	21.4	179
9	First genome-wide CNV mapping in FELIS CATUS using next generation sequencing data. BMC Genomics, 2018, 19, 895.	2.8	16
10	Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nature Genetics, 2018, 50, 1463-1473.	21.4	147
11	Unraveling the transcriptional regulation of TWIST1 in limb development. PLoS Genetics, 2018, 14, e1007738.	3.5	30
12	Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nature Genetics, 2017, 49, 1539-1545.	21.4	107
13	Breaking TADs: How Alterations of Chromatin Domains Result in Disease. Trends in Genetics, 2016, 32, 225-237.	6.7	370
14	Exome sequencing and CRISPR/Cas genome editing identify mutations of <i>ZAK</i> as a cause of limb defects in humans and mice. Genome Research, 2016, 26, 183-191.	5.5	52
15	Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Reports, 2015, 10, 833-839.	6.4	181
16	Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions. Cell, 2015, 161, 1012-1025.	28.9	1,725
17	Positive and negative unintended human-induced effects on Iberian mole abundance at the edge of its distribution area. Mammalian Biology, 2013, 78, 276-282.	1.5	3
18	ldentification of Live Germ-Cell Desquamation as a Major Mechanism of Seasonal Testis Regression in Mammals: A Study in the Iberian Mole (Talpa occidentalis)1. Biology of Reproduction, 2013, 88, 101.	2.7	37

DarÃo G LupiÃiñez

#	Article	IF	CITATIONS
19	A MicroRNA (mmu-miR-124) Prevents Sox9 Expression in Developing Mouse Ovarian Cells1. Biology of Reproduction, 2013, 89, 78.	2.7	53
20	Morphology and ultrastructure of the chorioallantoic placenta of the Iberian mole (<i>Talpa) Tj ETQq0 0 0 rgBT/C barrier. Journal of Anatomy, 2012, 221, 164-173.</i>)verlock 1 1.5	0 Tf 50 707 1 8
21	Pattern and Density of Vascularization in Mammalian Testes, Ovaries, and Ovotestes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 170-181.	1.3	9
22	Expression of Genes Controlling Testicular Development in Adult Testis of the Seasonally Breeding Iberian Mole. Sexual Development, 2011, 5, 77-88.	2.0	16
23	SOX9 is not required for the cellular events of testicular organogenesis in XX mole ovotestes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 734-748.	1.3	9
24	The spatio-temporal pattern of testis organogenesis in mammals - insights from the mole. International Journal of Developmental Biology, 2009, 53, 1035-1044.	0.6	19
25	Meiosis Onset Is Postponed to Postnatal Stages during Ovotestis Development in Female Moles. Sexual Development, 2007, 1, 66-76.	2.0	13