
Filip K Swirski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3910601/publications.pdf Version: 2024-02-01

FILID K SWIDSKI

#	Article	IF	CITATIONS
1	Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. , 2022, 1, 28-44.		32
2	Mischief in the marrow: a root of cardiovascular evil. European Heart Journal, 2022, , .	2.2	3
3	B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis. Nature Immunology, 2022, 23, 605-618.	14.5	33
4	Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. Journal of Clinical Investigation, 2022, 132, .	8.2	28
5	Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nature Neuroscience, 2022, 25, 567-576.	14.8	72
6	Brain motor and fear circuits regulate leukocytes during acute stress. Nature, 2022, 607, 578-584.	27.8	69
7	Neutrophils incite and macrophages avert electrical storm after myocardial infarction. , 2022, 1, 649-664.		33
8	Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections. Nature Communications, 2021, 12, 1112.	12.8	44
9	Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell, 2021, 184, 1348-1361.e22.	28.9	149
10	Prosaposin mediates inflammation in atherosclerosis. Science Translational Medicine, 2021, 13, .	12.4	42
11	Astrocytic interleukin-3 programs microglia and limits Alzheimer's disease. Nature, 2021, 595, 701-706.	27.8	157
12	Chronic stress primes innate immune responses in mice and humans. Cell Reports, 2021, 36, 109595.	6.4	53
13	Spontaneous Degenerative Aortic Valve Disease in New Zealand Obese Mice. Journal of the American Heart Association, 2021, 10, e023131.	3.7	5
14	Platelets have a dangerous hold over immune cells in cardiovascular disease. Nature, 2020, 577, 323-324.	27.8	8
15	Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor ⁶⁴ Cu-Macrin in Mice, Rabbits, and Pigs. Circulation: Cardiovascular Imaging, 2020, 13, e010586.	2.6	32
16	Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nature Biomedical Engineering, 2020, 4, 1076-1089.	22.5	80
17	Liver X receptors are required for thymic resilience and T cell output. Journal of Experimental Medicine, 2020, 217, .	8.5	20
18	Inhibition of macrophage proliferation dominates plaque regression in response to cholesterol lowering. Basic Research in Cardiology, 2020, 115, 78.	5.9	37

#	Article	IF	CITATIONS
19	Multimodal imaging of bacterial-host interface in mice and piglets with <i>Staphylococcus aureus</i> endocarditis. Science Translational Medicine, 2020, 12, .	12.4	6
20	A durable murine model of spleen transplantation with arterial and venous anastomoses. Scientific Reports, 2020, 10, 3979.	3.3	1
21	Diminished Reactive Hematopoiesis and Cardiac Inflammation in a Mouse Model of Recurrent Myocardial Infarction. Journal of the American College of Cardiology, 2020, 75, 901-915.	2.8	28
22	Bone Marrow Endothelial Cells Regulate Myelopoiesis in Diabetes Mellitus. Circulation, 2020, 142, 244-258.	1.6	42
23	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	31.5	42
24	Modifiable Cardiovascular Risk, Hematopoiesis, and Innate Immunity. Circulation Research, 2020, 126, 1242-1259.	4.5	67
25	Hematopoiesis and Cardiovascular Disease. Circulation Research, 2020, 126, 1061-1085.	4.5	96
26	Multimodal Molecular Imaging Demonstrates Myeloperoxidase Regulation of Matrix Metalloproteinase Activity in Neuroinflammation. Molecular Neurobiology, 2019, 56, 954-962.	4.0	8
27	Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, 11, .	12.4	51
28	Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nature Medicine, 2019, 25, 1761-1771.	30.7	157
29	Tissue-Specific Macrophage Responses to Remote Injury Impact the Outcome of Subsequent Local Immune Challenge. Immunity, 2019, 51, 899-914.e7.	14.3	110
30	Self-reactive CD4+ IL-3+ T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis. Journal of Experimental Medicine, 2019, 216, 369-383.	8.5	34
31	Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature, 2019, 566, 115-119.	27.8	128
32	Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. European Heart Journal, 2019, 40, 2482-2491.	2.2	102
33	Wnt5a-Mediated Neutrophil Recruitment Has an Obligatory Role in Pressure Overload–Induced Cardiac Dysfunction. Circulation, 2019, 140, 487-499.	1.6	60
34	Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation, 2019, 140, 225-239.	1.6	100
35	c-Myb Exacerbates Atherosclerosis through Regulation of Protective IgM-Producing Antibody-Secreting Cells. Cell Reports, 2019, 27, 2304-2312.e6.	6.4	3
36	Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1275-1287.	2.4	36

#	Article	IF	CITATIONS
37	Glucocorticoids Regulate Bone Marrow B Lymphopoiesis After Stroke. Circulation Research, 2019, 124, 1372-1385.	4.5	50
38	Sleep modulates haematopoiesis and protects against atherosclerosis. Nature, 2019, 566, 383-387.	27.8	279
39	The Myocardium. Journal of the American College of Cardiology, 2019, 74, 3136-3138.	2.8	8
40	Reply to â€~Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies'. Nature Reviews Immunology, 2019, 19, 65-65.	22.7	0
41	Clonal Hematopoiesis Wages War on the Myocardium. Journal of the American College of Cardiology, 2018, 71, 887-889.	2.8	1
42	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	22.5	94
43	Cardiac macrophages promote diastolic dysfunction. Journal of Experimental Medicine, 2018, 215, 423-440.	8.5	314
44	From clonal haematopoiesis to the CANTOS trial. Nature Reviews Cardiology, 2018, 15, 79-80.	13.7	25
45	Integrated Biosensor for Rapid and Point-of-Care Sepsis Diagnosis. ACS Nano, 2018, 12, 3378-3384.	14.6	122
46	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	14.3	161
47	Rings of Fire. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1671-1672.	2.4	0
48	Monocyte and Macrophage Dynamics in the Cardiovascular System. Journal of the American College of Cardiology, 2018, 72, 2198-2212.	2.8	47
49	A Miniaturized, Programmable Pacemaker for Long-Term Studies in the Mouse. Circulation Research, 2018, 123, 1208-1219.	4.5	18
50	Cardioimmunology: the immune system in cardiac homeostasis and disease. Nature Reviews Immunology, 2018, 18, 733-744.	22.7	482
51	Is defective cholesterol efflux an integral inflammatory component in myelopoiesis-driven cardiovascular diseases?. European Heart Journal, 2018, 39, 2168-2171.	2.2	8
52	Imaging the Vascular Bone Marrow Niche During Inflammatory Stress. Circulation Research, 2018, 123, 415-427.	4.5	45
53	A CRISPR Take on Clonal Hematopoiesis. Circulation Research, 2018, 123, 313-314.	4.5	1
54	Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nature Neuroscience, 2018, 21, 1209-1217.	14.8	302

#	Article	IF	CITATIONS
55	Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nature Communications, 2017, 8, 14064.	12.8	118
56	Monocytosis, Hypercholesterolemia, and the Kinase That Binds Them. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 173-175.	2.4	3
57	Old, caffeinated, and healthy. Nature Reviews Cardiology, 2017, 14, 194-196.	13.7	3
58	Macrophages Facilitate Electrical Conduction in the Heart. Cell, 2017, 169, 510-522.e20.	28.9	703
59	Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice. Circulation Research, 2017, 121, 31-42.	4.5	141
60	Cytokine storm and sepsis disease pathogenesis. Seminars in Immunopathology, 2017, 39, 517-528.	6.1	879
61	Cholesterol, CCR2, and monocyte phenotypes in atherosclerosis. European Heart Journal, 2017, 38, 1594-1596.	2.2	21
62	"Pumping ironâ€â€"how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflugers Archiv European Journal of Physiology, 2017, 469, 397-418.	2.8	132
63	Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood, 2017, 129, 405-414.	1.4	176
64	The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. Journal of Experimental Medicine, 2017, 214, 3293-3310.	8.5	161
65	Cibinetide dampens innate immune cell functions thus ameliorating the course of experimental colitis. Scientific Reports, 2017, 7, 13012.	3.3	9
66	Unraveling Vascular Inflammation. Journal of the American College of Cardiology, 2017, 70, 1403-1412.	2.8	59
67	Diversity of Inflammatory Cells in Vascular Degenerative Disease. Cardiac and Vascular Biology, 2017, , 81-97.	0.2	0
68	Mechanisms of Myeloid Cell Modulation of Atherosclerosis. Microbiology Spectrum, 2016, 4, .	3.0	33
69	Myeloperoxidase Inhibition Improves Ventricular Function and Remodeling AfterÂExperimental Myocardial Infarction. JACC Basic To Translational Science, 2016, 1, 633-643.	4.1	77
70	Bone Marrow Takes Center Stage in Cardiovascular Disease. Circulation Research, 2016, 119, 701-703.	4.5	14
71	E-Selectin Inhibition Mitigates Splenic HSC Activation and Myelopoiesis in Hypercholesterolemic Mice With Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1802-1808.	2.4	26
72	Abandoning M1/M2 for a Network Model of Macrophage Function. Circulation Research, 2016, 119, 414-417.	4.5	339

#	Article	IF	CITATIONS
73	Reply. Journal of the American College of Cardiology, 2016, 68, 432.	2.8	2
74	Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circulation Research, 2016, 119, 853-864.	4.5	318
75	On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nature Medicine, 2016, 22, 945-951.	30.7	333
76	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	7.1	95
77	RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Science Translational Medicine, 2016, 8, 342ra80.	12.4	169
78	ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nature Communications, 2016, 7, 12313.	12.8	71
79	Circadian Influence on Metabolism and Inflammation in Atherosclerosis. Circulation Research, 2016, 119, 131-141.	4.5	98
80	Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nature Immunology, 2016, 17, 159-168.	14.5	275
81	Atheroprotection through SYK inhibition fails in established disease when local macrophage proliferation dominates lesion progression. Basic Research in Cardiology, 2016, 111, 20.	5.9	31
82	Leukocytes Link Local and SystemicÂInflammation in IschemicÂCardiovascularÂDisease. Journal of the American College of Cardiology, 2016, 67, 1091-1103.	2.8	257
83	Development and Function of Arterial and Cardiac Macrophages. Trends in Immunology, 2016, 37, 32-40.	6.8	64
84	Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction?. European Heart Journal, 2016, 37, 868-872.	2.2	67
85	Myeloperoxidase Nuclear Imaging for Epileptogenesis. Radiology, 2016, 278, 822-830.	7.3	24
86	The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Scientific Reports, 2015, 5, 10055.	3.3	39
87	PET Imaging of Leukocytes in Patients With Acute Myocardial Infarction. JACC: Cardiovascular Imaging, 2015, 8, 1427-1429.	5.3	6
88	Monocyte Fate in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 272-279.	2.4	157
89	Lifestyle Effects on Hematopoiesis and Atherosclerosis. Circulation Research, 2015, 116, 884-894.	4.5	89
90	Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science, 2015, 347, 1260-1265.	12.6	265

#	Article	IF	CITATIONS
91	Neutrophil-macrophage communication in inflammation and atherosclerosis. Science, 2015, 349, 237-238.	12.6	87
92	Imaging Systemic Inflammatory Networks in Ischemic Heart Disease. Journal of the American College of Cardiology, 2015, 65, 1583-1591.	2.8	64
93	Myocardial Infarction Activates CCR2+ Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2015, 16, 477-487.	11.1	168
94	Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. Journal of Experimental Medicine, 2015, 212, 497-512.	8.5	143
95	Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science Advances, 2015, 1, .	10.3	173
96	Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis. Circulation Research, 2015, 117, 835-845.	4.5	72
97	Lp-PLA ₂ Antagonizes Left Ventricular Healing After Myocardial Infarction by Impairing the Appearance of Reparative Macrophages. Circulation: Heart Failure, 2015, 8, 980-987.	3.9	11
98	Innate response activator B cells: origins and functions. International Immunology, 2015, 27, 537-541.	4.0	38
99	Targeting Interleukin-1Î ² Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation, 2015, 132, 1880-1890.	1.6	200
100	Ischemic Stroke Activates Hematopoietic Bone Marrow Stem Cells. Circulation Research, 2015, 116, 407-417.	4.5	182
101	Silencing of CCR2 in myocarditis. European Heart Journal, 2015, 36, 1478-1488.	2.2	101
102	Ly-6C ^{high} Monocytes Depend on Nr4a1 to Balance Both Inflammatory and Reparative Phases in the Infarcted Myocardium. Circulation Research, 2014, 114, 1611-1622.	4.5	427
103	Imaging Systemic Inflammation in Patients With Acute Myocardial Infarction. Circulation: Cardiovascular Imaging, 2014, 7, 762-764.	2.6	3
104	Fluorescent Leukocytes Enter Plaque on the Microscope Stage. Circulation Research, 2014, 114, 740-741.	4.5	1
105	Regulating Repair. Circulation Research, 2014, 115, 7-9.	4.5	20
106	From proliferation to proliferation: monocyte lineage comes full circle. Seminars in Immunopathology, 2014, 36, 137-148.	6.1	48
107	The journey from stem cell to macrophage. Annals of the New York Academy of Sciences, 2014, 1319, 1-18.	3.8	64
108	Innate Response Activator B Cells Aggravate Atherosclerosis by Stimulating T Helper-1 Adaptive Immunity. Circulation, 2014, 129, 1677-1687.	1.6	107

#	Article	IF	CITATIONS
109	Immunopathogenesis of abdominal sepsis. Langenbeck's Archives of Surgery, 2014, 399, 1-9.	1.9	40
110	MARCOing Monocytes for Elimination. Science Translational Medicine, 2014, 6, 219fs4.	12.4	4
111	Do Vascular Smooth Muscle Cells Differentiate to Macrophages in Atherosclerotic Lesions?. Circulation Research, 2014, 115, 605-606.	4.5	20
112	Chronic variable stress activates hematopoietic stem cells. Nature Medicine, 2014, 20, 754-758.	30.7	565
113	InÂVivo Silencing of the Transcription Factor IRF5 Reprograms the Macrophage Phenotype and Improves Infarct Healing. Journal of the American College of Cardiology, 2014, 63, 1556-1566.	2.8	220
114	Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. Journal of Experimental Medicine, 2014, 211, 1243-1256.	8.5	132
115	Differential Contribution of Monocytes to Heart Macrophages in Steady-State and After Myocardial Infarction. Circulation Research, 2014, 115, 284-295.	4.5	453
116	Monocyte recruitment and macrophage proliferation in atherosclerosis. Kardiologia Polska, 2014, 72, 311-314.	0.6	6
117	Monocyte heterogeneity in cardiovascular disease. Seminars in Immunopathology, 2013, 35, 553-562.	6.1	72
118	Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Medicine, 2013, 19, 1166-1172.	30.7	855
119	Macrophage-Stem Cell Crosstalk After Myocardial Infarction. Journal of the American College of Cardiology, 2013, 62, 1902-1904.	2.8	23
120	Leukocyte Behavior in Atherosclerosis, Myocardial Infarction, and Heart Failure. Science, 2013, 339, 161-166.	12.6	856
121	Neutrophils Usher Monocytes Into Sites of Inflammation. Circulation Research, 2013, 112, 744-745.	4.5	25
122	Hypercholesterolemia links hematopoiesis with atherosclerosis. Trends in Endocrinology and Metabolism, 2013, 24, 129-136.	7.1	83
123	Angiotensin II Drives the Production of Tumor-Promoting Macrophages. Immunity, 2013, 38, 296-308.	14.3	157
124	Imaging macrophage development and fate in atherosclerosis and myocardial infarction. Immunology and Cell Biology, 2013, 91, 297-303.	2.3	20
125	Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice. Circulation, 2013, 127, 2038-2046.	1.6	243
126	Monocyte and Macrophage Heterogeneity in the Heart. Circulation Research, 2013, 112, 1624-1633.	4.5	279

#	Article	IF	CITATIONS
127	Polymeric Nanoparticle PET/MR Imaging Allows Macrophage Detection in Atherosclerotic Plaques. Circulation Research, 2013, 112, 755-761.	4.5	144
128	Nanoparticle PET-CT Detects Rejection and Immunomodulation in Cardiac Allografts. Circulation: Cardiovascular Imaging, 2013, 6, 568-573.	2.6	35
129	Molecular Imaging of Inflammation in Atherosclerosis. Theranostics, 2013, 3, 865-884.	10.0	63
130	Demyelinating Diseases: Myeloperoxidase as an Imaging Biomarker and Therapeutic Target. Radiology, 2012, 263, 451-460.	7.3	81
131	Newly discovered innate response activator B cells: crucial responders against microbial sepsis. Expert Review of Clinical Immunology, 2012, 8, 405-407.	3.0	8
132	Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2491-2496.	7.1	547
133	Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. Molecular Therapy - Nucleic Acids, 2012, 1, e4.	5.1	112
134	Folate Receptor: A Macrophage "Achilles' Heel�. Journal of the American Heart Association, 2012, 1, e004036.	3.7	6
135	Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1868-77.	7.1	144
136	Innate Response Activator B Cells Protect Against Microbial Sepsis. Science, 2012, 335, 597-601.	12.6	351
137	Extramedullary Hematopoiesis Generates Ly-6C ^{high} Monocytes That Infiltrate Atherosclerotic Lesions. Circulation, 2012, 125, 364-374.	1.6	398
138	Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. Journal of Experimental Medicine, 2012, 209, 123-137.	8.5	435
139	Myocardial infarction accelerates atherosclerosis. Nature, 2012, 487, 325-329.	27.8	874
140	Regulation of Monocyte Functional Heterogeneity by miR-146a and Relb. Cell Reports, 2012, 1, 317-324.	6.4	105
141	The Ins and Outs of Inflammatory Cells in Atheromata. Cell Metabolism, 2012, 15, 135-136.	16.2	24
142	PET/MRI of Inflammation in Myocardial Infarction. Journal of the American College of Cardiology, 2012, 59, 153-163.	2.8	301
143	Making a Difference: Monocyte Heterogeneity in Cardiovascular Disease. Current Atherosclerosis Reports, 2012, 14, 450-459.	4.8	47
144	A dense network of dendritic cells populates the murine epididymis. Reproduction, 2011, 141, 653-663.	2.6	106

#	Article	IF	CITATIONS
145	In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nature Medicine, 2011, 17, 1142-1146.	30.7	144
146	Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 2011, 29, 1005-1010.	17.5	697
147	Different Capacity of Monocyte Subsets to Phagocytose Iron-Oxide Nanoparticles. PLoS ONE, 2011, 6, e25197.	2.5	38
148	Monocytes link atherosclerosis and cancer. European Journal of Immunology, 2011, 41, 2519-2522.	2.9	31
149	Detection of Macrophages in Aortic Aneurysms by Nanoparticle Positron Emission Tomography–Computed Tomography. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 750-757.	2.4	130
150	The Spatial and Developmental Relationships in the Macrophage Family. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1517-1522.	2.4	30
151	The multiple roles of monocyte subsets in steady state and inflammation. Cellular and Molecular Life Sciences, 2010, 67, 2685-2693.	5.4	102
152	Angiotensin-Converting Enzyme Inhibition Prevents the Release of Monocytes From Their Splenic Reservoir in Mice With Myocardial Infarction. Circulation Research, 2010, 107, 1364-1373.	4.5	198
153	Hybrid PET-optical imaging using targeted probes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7910-7915.	7.1	208
154	Monocytes: Protagonists of Infarct Inflammation and Repair After Myocardial Infarction. Circulation, 2010, 121, 2437-2445.	1.6	645
155	Impaired Infarct Healing in Atherosclerotic Mice With Ly-6ChiMonocytosis. Journal of the American College of Cardiology, 2010, 55, 1629-1638.	2.8	281
156	Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice. Journal of Clinical Investigation, 2010, 120, 2627-2634.	8.2	90
157	Multimodality Cardiovascular Molecular Imaging, Part II. Circulation: Cardiovascular Imaging, 2009, 2, 56-70.	2.6	130
158	Heterogeneous In Vivo Behavior of Monocyte Subsets in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1424-1432.	2.4	121
159	Molecular Imaging of Innate Immune Cell Function in Transplant Rejection. Circulation, 2009, 119, 1925-1932.	1.6	81
160	Hybrid In Vivo FMT-CT Imaging of Protease Activity in Atherosclerosis With Customized Nanosensors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1444-1451.	2.4	161
161	Rapid detection and profiling of cancer cells in fine-needle aspirates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12459-12464.	7.1	176
162	Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites. Science, 2009, 325, 612-616.	12.6	1,806

#	Article	IF	CITATIONS
163	Behavior of Endogenous Tumor-Associated Macrophages Assessed In Vivo Using a Functionalized Nanoparticle. Neoplasia, 2009, 11, 459-IN4.	5.3	103
164	Monocyte Subset Dynamics in Human Atherosclerosis Can Be Profiled with Magnetic Nano-Sensors. PLoS ONE, 2009, 4, e5663.	2.5	50
165	Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis. Circulation, 2008, 117, 379-387.	1.6	524
166	Diversity of Denizens of the Atherosclerotic Plaque. Circulation, 2008, 117, 3168-3170.	1.6	65
167	Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation. Journal of Clinical Investigation, 2008, 118, 4058-4066.	8.2	66
168	Noninvasive In Vivo Imaging of Monocyte Trafficking to Atherosclerotic Lesions. Circulation, 2008, 117, 388-395.	1.6	103
169	Activatable Magnetic Resonance Imaging Agent Reports Myeloperoxidase Activity in Healing Infarcts and Noninvasively Detects the Antiinflammatory Effects of Atorvastatin on Ischemia-Reperfusion Injury. Circulation, 2008, 117, 1153-1160.	1.6	178
170	Osteogenesis Associates With Inflammation in Early-Stage Atherosclerosis Evaluated by Molecular Imaging In Vivo. Circulation, 2007, 116, 2841-2850.	1.6	606
171	Divergent immune responses to house dust mite lead to distinct structural-functional phenotypes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L730-L739.	2.9	28
172	Dual Channel Optical Tomographic Imaging of Leukocyte Recruitment and Protease Activity in the Healing Myocardial Infarct. Circulation Research, 2007, 100, 1218-1225.	4.5	151
173	Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. Journal of Clinical Investigation, 2007, 117, 195-205.	8.2	1,064
174	<i>In vivo</i> imaging of T cell delivery to tumors after adoptive transfer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12457-12461.	7.1	113
175	The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 2007, 204, 3037-3047.	8.5	1,926
176	A Near-Infrared Cell Tracker Reagent for Multiscopic In Vivo Imaging and Quantification of Leukocyte Immune Responses. PLoS ONE, 2007, 2, e1075.	2.5	59
177	The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Cell Biology, 2007, 179, i13-i13.	5.2	1
178	Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nature Protocols, 2006, 1, 73-79.	12.0	148
179	Prolonged Ovalbumin Exposure Attenuates Airway Hyperresponsiveness and T Cell Function in Mice. International Archives of Allergy and Immunology, 2006, 141, 130-140.	2.1	17
180	Inhalation Tolerance Is Induced Selectively in Thoracic Lymph Nodes but Executed Pervasively at Distant Mucosal and Nonmucosal Tissues. Journal of Immunology, 2006, 176, 2568-2580.	0.8	17

#	Article	IF	CITATIONS
181	Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10340-10345.	7.1	316
182	B7RP-1 Is Not Required for the Generation of Th2 Responses in a Model of Allergic Airway Inflammation but Is Essential for the Induction of Inhalation Tolerance. Journal of Immunology, 2005, 174, 3000-3005.	0.8	20
183	Interleukin-13–Dependent Expression of Matrix Metalloproteinase-12 Is Required for the Development of Airway Eosinophilia in Mice. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 84-90.	2.9	54
184	Cigarette Smoke Decreases Pulmonary Dendritic Cells and Impacts Antiviral Immune Responsiveness. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 202-211.	2.9	167
185	Continuous Exposure to House Dust Mite Elicits Chronic Airway Inflammation and Structural Remodeling. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 378-385.	5.6	371
186	Concomitant airway expression of granulocyte-macrophage colony-stimulating factor and decorin, a natural inhibitor of transforming growth factor-β, breaks established inhalation tolerance. European Journal of Immunology, 2004, 34, 2375-2386.	2.9	9
187	Chronic Exposure to Innocuous Antigen in Sensitized Mice Leads to Suppressed Airway Eosinophilia That Is Reversed by Granulocyte Macrophage Colony-Stimulating Factor. Journal of Immunology, 2002, 169, 3499-3506.	0.8	82
188	Temporal–Spatial Analysis of the Immune Response in a Murine Model of Ovalbumin-Induced Airways Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 326-334.	2.9	34
189	Mechanisms of Myeloid Cell Modulation of Atherosclerosis. , 0, , 813-824.		0
190	<i>c-Myb</i> Exacerbates Atherosclerosis Through Regulation of Harmful B2 and Protective IgM-producing Antibody Secreting Cells. SSRN Electronic Journal, 0, , .	0.4	0