
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3910546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prostaglandin E2 and Pain-An Update. Biological and Pharmaceutical Bulletin, 2011, 34, 1170-1173.	1.4	267
2	Hydrogen sulfide as a novel nociceptive messenger. Pain, 2007, 132, 74-81.	4.2	166
3	Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: Contribution to dual modulation of vascular tension. Toxicology, 2007, 232, 138-146.	4.2	166
4	The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection. Journal of Clinical Investigation, 2001, 107, 1443-1450.	8.2	146
5	Effect of topical administration of <scp>l</scp> â€arginine on formalinâ€induced nociception in the mouse: a dual role of peripherally formed NO in pain modulation. British Journal of Pharmacology, 1994, 112, 547-550.	5.4	139
6	Hyperalgesia induced by spinal and peripheral hydrogen sulfide: Evidence for involvement of Cav3.2 T-type calcium channels. Pain, 2009, 142, 127-132.	4.2	125
7	Increased vascular permeability by a specific agonist of proteaseâ€activated receptorâ€2 in rat hindpaw. British Journal of Pharmacology, 1998, 125, 419-422.	5.4	114
8	Upregulation of Cav3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Pain, 2010, 150, 183-191.	4.2	114
9	<scp>l</scp> â€Arginine exerts a dual role in nociceptive processing in the brain: involvement of the kyotorphinâ€Metâ€enkephalin pathway and NOâ€eyclic GMP pathway. British Journal of Pharmacology, 1993, 109, 73-79.	5.4	112
10	A protective role of hydrogen sulfide against oxidative stress in rat gastric mucosal epithelium. Toxicology, 2007, 241, 11-18.	4.2	110
11	Hydrogen sulfide inhibits activity of three isoforms of recombinant nitric oxide synthase. Toxicology, 2007, 241, 92-97.	4.2	99
12	Peripheral PAR-2 triggers thermal hyperalgesia and nociceptive responses in rats. NeuroReport, 2001, 12, 715-719.	1.2	94
13	Proteinase-activated receptor-2 (PAR-2): regulation of salivary and pancreatic exocrine secretion in vivo in rats and mice. British Journal of Pharmacology, 2000, 129, 1808-1814.	5.4	88
14	Gastrointestinal roles for proteinaseâ€activated receptors in health and disease. British Journal of Pharmacology, 2008, 153, S230-40.	5.4	76
15	Hydrogen sulfideâ€induced mechanical hyperalgesia and allodynia require activation of both Ca _v 3.2 and TRPA1 channels in mice. British Journal of Pharmacology, 2012, 166, 1738-1743.	5.4	76
16	Protease-Activated Receptor (PAR), a Novel Family of G Protein-Coupled Seven Trans-membrane Domain Receptors: Activation Mechanisms and Physiological Roles. The Japanese Journal of Pharmacology, 2000, 82, 171-174.	1.2	71
17	In vivo evidence that protease-activated receptors 1 and 2 modulate gastrointestinal transit in the mouse. British Journal of Pharmacology, 2001, 133, 1213-1218.	5.4	71
18	<scp>l</scp> â€Leucylâ€ <scp>l</scp> â€arginine, naltrindole and <scp>d</scp> â€arginine block antinociception elicited by <scp>l</scp> â€arginine in mice with carrageeninâ€induced hyperalgesia. British Journal of Pharmacology, 1992, 107, 1096-1101.	5.4	69

#	Article	IF	CITATIONS
19	Modulation by protease-activated receptors of the rat duodenal motility in vitro : possible mechanisms underlying the evoked contraction and relaxation. British Journal of Pharmacology, 1999, 128, 865-872.	5.4	69
20	T-type Calcium Channels: Functional Regulation and Implication in Pain Signaling. Journal of Pharmacological Sciences, 2013, 122, 244-250.	2.5	69
21	Antinociceptive effect of L-arginine on the carrageenin-induced hyperalgesia of the rat: possible involvement of central opioidergic systems. European Journal of Pharmacology, 1992, 218, 153-158.	3.5	67
22	Potent and Metabolically Stable Agonists for Protease-Activated Receptor-2: Evaluation of Activity in Multiple Assay Systems in Vitro and in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1098-1107.	2.5	65
23	Activation of Protease-Activated Receptor-2 (PAR-2) Triggers Mucin Secretion in the Rat Sublingual Gland. Biochemical and Biophysical Research Communications, 2000, 270, 298-302.	2.1	64
24	Protease-activated receptor-2 (PAR-2) in the pancreas and parotid gland: Immunolocalization and involvement of nitric oxide in the evoked amylase secretion. Life Sciences, 2002, 71, 2435-2446.	4.3	64
25	Gastrointestinal functions of proteinase-activated receptors. Life Sciences, 2003, 74, 247-254.	4.3	64
26	Involvement of the endogenous hydrogen sulfide/Ca _v 3.2 Tâ€ŧype Ca ²⁺ channel pathway in cystitisâ€ŧelated bladder pain in mice. British Journal of Pharmacology, 2012, 167, 917-928.	5.4	64
27	Hydrogen Sulfide Causes Relaxation in Mouse Bronchial Smooth Muscle. Journal of Pharmacological Sciences, 2007, 104, 392-396.	2.5	63
28	Macrophage as a Peripheral Pain Regulator. Cells, 2021, 10, 1881.	4.1	63
29	Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. Neuropharmacology, 2018, 141, 201-213.	4.1	61
30	Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs): PARs in the Respiratory System: Cellular Signaling and Physiological/Pathological Roles. Journal of Pharmacological Sciences, 2005, 97, 20-24.	2.5	60
31	Chelating luminal zinc mimics hydrogen sulfide-evoked colonic pain in mice: possible involvement of T-type calcium channels. Neuroscience, 2011, 181, 257-264.	2.3	60
32	Modulation of Capsaicin-Evoked Visceral Pain and Referred Hyperalgesia by Protease-Activated Receptors 1 and 2. Journal of Pharmacological Sciences, 2004, 94, 277-285.	2.5	58
33	Specific Distribution of Sialic Acids in Animal Tissues As Examined by LCâ^'ESI-MS after Derivatization with 1,2-Diamino-4,5-Methylenedioxybenzene. Analytical Chemistry, 2001, 73, 5422-5428.	6.5	53
34	Proteinase activated receptor 2: role of extracellular loop 2 for ligand-mediated activation. British Journal of Pharmacology, 1999, 128, 1105-1113.	5.4	52
35	Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells. Biochemical and Biophysical Research Communications, 2014, 445, 225-229.	2.1	52
36	Proteaseâ€activated receptorâ€2 (PARâ€2) in the rat gastric mucosa: immunolocalization and facilitation of pepsin/pepsinogen secretion. British Journal of Pharmacology, 2002, 135, 1292-1296.	5.4	51

Атѕиғимі Кашавата

#	Article	IF	CITATIONS
37	ONO-8130, a selective prostanoid EP1 receptor antagonist, relieves bladder pain in mice with cyclophosphamide-induced cystitis. Pain, 2011, 152, 1373-1381.	4.2	50
38	Signal Transduction for Proteinase-Activated Receptor-2-Triggered Prostaglandin E2 Formation in Human Lung Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 576-589.	2.5	49
39	Factor Xa-Evoked Relaxation in Rat Aorta: Involvement of PAR-2. Biochemical and Biophysical Research Communications, 2001, 282, 432-435.	2.1	48
40	Suppression of pancreatitisâ€related allodynia/hyperalgesia by proteinaseâ€activated receptorâ€2 in mice. British Journal of Pharmacology, 2006, 148, 54-60.	5.4	47
41	Hydrogen sulfide evokes neurite outgrowth and expression of highâ€voltageâ€activated Ca ²⁺ currents in NG108â€15 cells: involvement of Tâ€type Ca ²⁺ channels. Journal of Neurochemistry, 2009, 108, 676-684.	3.9	46
42	A protective role of protease-activated receptor 1 in rat gastric mucosa. Gastroenterology, 2004, 126, 208-219.	1.3	45
43	Colonic Hydrogen Sulfide^ ^ndash;Induced Visceral Pain and Referred Hyperalgesia Involve Activation of Both Cav3.2 and TRPA1 Channels in Mice. Journal of Pharmacological Sciences, 2012, 119, 293-296.	2.5	45
44	PAR2 triggers IL-8 release via MEK/ERK and PI3-kinase/Akt pathways in GI epithelial cells. Biochemical and Biophysical Research Communications, 2008, 377, 622-626.	2.1	44
45	Bladder pain relief by HMGB1 neutralization and soluble thrombomodulin in mice with cyclophosphamide-induced cystitis. Neuropharmacology, 2014, 79, 112-118.	4.1	42
46	Involvement of Voltage-Gated Calcium Channels in Inflammation and Inflammatory Pain. Biological and Pharmaceutical Bulletin, 2018, 41, 1127-1134.	1.4	42
47	Critical role of Cav3.2 T-type calcium channels in the peripheral neuropathy induced by bortezomib, a proteasome-inhibiting chemotherapeutic agent, in mice. Toxicology, 2019, 413, 33-39.	4.2	42
48	Penetration of cisplatin into mouse brain by lipopolysaccharide. Toxicology, 1998, 130, 107-113.	4.2	41
49	Enhancement of vascular permeability by specific activation of protease-activated receptor-1 in rat hindpaw: a protective role of endogenous and exogenous nitric oxide. British Journal of Pharmacology, 1999, 126, 1856-1862.	5.4	41
50	Macrophage-derived HMGB1 as a Pain Mediator in the Early Stage of Acute Pancreatitis in Mice: Targeting RAGE and CXCL12/CXCR4 Axis. Journal of NeuroImmune Pharmacology, 2017, 12, 693-707.	4.1	41
51	Peripheral HMGB1-induced hyperalgesia in mice: Redox state-dependent distinct roles of RAGE and TLR4. Journal of Pharmacological Sciences, 2016, 130, 139-142.	2.5	40
52	Dual modulation of the tension of isolated gastric artery and gastric mucosal circulation by hydrogen sulfide in rats. Inflammopharmacology, 2007, 15, 288-292.	3.9	39
53	Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology, 2016, 365, 48-58.	4.2	39
54	Changes of Tissue Blood Flow in Mice Loaded with SART (Repeated Cold) Stress or Restraint and Water Immersion Stress and the Effect of Administered Neurotropin. The Japanese Journal of Pharmacology, 1986, 41, 69-79.	1.2	37

Атѕиғимі Кашавата

#	Article	IF	CITATIONS
55	Dual modulation by thrombin of the motility of rat oesophageal muscularis mucosae via two distinct protease-activated receptors (PARs): a novel role for PAR-4 as opposed to PAR-1. British Journal of Pharmacology, 2000, 131, 578-584.	5.4	37
56	PAR-2: structure, function and relevance to human diseases of the gastric mucosa. Expert Reviews in Molecular Medicine, 2002, 4, 1-17.	3.9	37
57	Suppression by protease-activated receptor-2 activation of gastric acid secretion in rats. European Journal of Pharmacology, 2002, 447, 87-90.	3.5	37
58	Proteinase-Activated Receptor-2-Mediated Relaxation in Mouse Tracheal and Bronchial Smooth Muscle: Signal Transduction Mechanisms and Distinct Agonist Sensitivity. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 402-410.	2.5	37
59	The PAR-1-activating peptide attenuates carrageenan-induced hyperalgesia in rats. Peptides, 2002, 23, 1181-1183.	2.4	36
60	Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model. International Journal of Molecular Sciences, 2015, 16, 29329-29344.	4.1	36
61	Roles of nitric oxide and prostaglandins in the increased permeability of the blood-brain barrier caused by lipopolysaccharide. Environmental Toxicology and Pharmacology, 1998, 5, 35-41.	4.0	35
62	Effect of a potent iNOS inhibitor (ONO-1714) on acetaminophen-induced hepatotoxicity in the rat. Life Sciences, 2003, 74, 793-802.	4.3	35
63	Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs): PAR-2 as a Potential Therapeutic Target. Journal of Pharmacological Sciences, 2005, 97, 38-42.	2.5	35
64	Role of non-macrophage cell-derived HMGB1 in oxaliplatin-induced peripheral neuropathy and its prevention by the thrombin/thrombomodulin system in rodents: negative impact of anticoagulants. Journal of Neuroinflammation, 2019, 16, 199.	7.2	35
65	Recombinant human soluble thrombomodulin prevents peripheral <scp>HMGB</scp> 1â€dependent hyperalgesia in rats. British Journal of Pharmacology, 2013, 170, 1233-1241.	5.4	34
66	Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells. Biological and Pharmaceutical Bulletin, 2016, 39, 887-890.	1.4	33
67	Mechanism of the Analgesic Effect of Neurotropin. The Japanese Journal of Pharmacology, 1988, 48, 165-173.	1.2	32
68	The Abnormal Open-Field Behavior of SART-Stressed Rats and Effects of Some Drugs on It. The Japanese Journal of Pharmacology, 1988, 48, 479-490.	1.2	31
69	2-Furoyl-LIGRL-NH2 , a potent agonist for proteinase-activated receptor-2, as a gastric mucosal cytoprotective agent in mice. British Journal of Pharmacology, 2005, 144, 212-219.	5.4	31
70	Colonic hyperalgesia triggered by proteinase-activated receptor-2 in mice: Involvement of endogenous bradykinin. Neuroscience Letters, 2006, 402, 167-172.	2.1	31
71	Distinct Activity of Peptide Mimetic Intracellular Ligands (Pepducins) for Proteinase-Activated Receptor-1 in Multiple Cells/Tissues. Annals of the New York Academy of Sciences, 2006, 1091, 445-459.	3.8	31
72	Characterization of Protease-Activated Receptors in Rat Peritoneal Mast Cells. The Japanese Journal of Pharmacology, 2000, 82, 74-77.	1.2	30

#	Article	IF	CITATIONS
73	Therapeutic potential of RQ-00311651, a novel T-type Ca2+ channel blocker, in distinct rodent models for neuropathic and visceral pain. Pain, 2016, 157, 1655-1665.	4.2	30
74	Characterization of the protease-activated receptor-1-mediated contraction and relaxation in the rat duodenal smooth muscle. Life Sciences, 2000, 67, 2521-2530.	4.3	29
75	Involvement of EDHF in the hypotension and increased gastric mucosal blood flow caused by PAR-2 activation in rats. British Journal of Pharmacology, 2003, 140, 247-254.	5.4	29
76	Curcumin Inhibits the Proteinase-Activated Receptor-2–Triggered Prostaglandin E2 Production by Suppressing Cyclooxygenase-2 Upregulation and Akt-Dependent Activation of Nuclear Factor-κB in Human Lung Epithelial Cells. Journal of Pharmacological Sciences, 2010, 114, 225-229.	2.5	29
77	Roles of Ca _v 3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis. Journal of Neuroscience Research, 2015, 93, 361-369.	2.9	29
78	SPECIAL REPORT Evidence that endogenous nitric oxide modulates plasma fibrinogen levels in the rat. British Journal of Pharmacology, 1996, 117, 236-237.	5.4	28
79	Capsazepine Inhibits Thermal Hyperalgesia but Not Nociception Triggered by Protease-Activated Receptor-2 in Rats. The Japanese Journal of Pharmacology, 2002, 89, 184-187.	1.2	28
80	Rhodanese, but not cystathionine-γ-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: A sign of impaired colonic sulfide detoxification?. Toxicology, 2009, 264, 96-103.	4.2	28
81	Involvement of Src kinase in Tâ€type calcium channelâ€dependent neuronal differentiation of NG108â€15 cells by hydrogen sulfide. Journal of Neurochemistry, 2010, 114, 512-519.	3.9	28
82	Changes in CNS Levels of Serotonin and Its Metabolite in SART-Stressed(Repeatedly) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 50 1.2	382 Td (Cold
83	Capsazepine Partially Inhibits Neurally Mediated Gastric Mucus Secretion Following Activation Of Protease-Activated Receptor 2. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 360-361.	1.9	27
84	The proteinase inhibitor camostat mesilate suppresses pancreatic pain in rodents. Life Sciences, 2007, 80, 1999-2004.	4.3	27
85	<scp>AKAP</scp> â€dependent sensitization of <scp>Ca</scp> _v 3.2 channels via the <scp>EP</scp> ₄ receptor/c <scp>AMP</scp> pathway mediates <scp>PGE</scp> ₂ â€induced mechanical hyperalgesia. British Journal of Pharmacology, 2013, 168, 734-745.	5.4	27
86	Cystitis-Related Bladder Pain Involves ATP-Dependent HMGB1 Release from Macrophages and Its Downstream H2S/Cav3.2 Signaling in Mice. Cells, 2020, 9, 1748.	4.1	27
87	Binding of a highly potent protease-activated receptor-2 (PAR2) activating peptide, [3 H]2-furoyl-LIGRL-NH2 , to human PAR2. British Journal of Pharmacology, 2005, 145, 255-263.	5.4	26
88	Functional upregulation of the H2S/Cav3.2 channel pathway accelerates secretory function in neuroendocrine-differentiated human prostate cancer cells. Biochemical Pharmacology, 2015, 97, 300-309.	4.4	26
89	Changes of Total Acetylcholine Content and the Activity of Related Enzymes in SART (Repeated) Tj ETQq1 1 0.7	784314 rgB ⁻ 1.2	Г /Qverlock 1
90	Role of N-methyl-d-aspartate receptors and the nitric oxide pathway in nociception/hyperalgesia elicited by protease-activated receptor-2 activation in mice and rats. Neuroscience Letters, 2002, 329, 349-353.	2.1	25

6

Атѕиғимі Кашавата

#	Article	IF	CITATIONS
91	Distinct roles for protease-activated receptors 1 and 2 in vasomotor modulation in rat superior mesenteric artery. Cardiovascular Research, 2004, 61, 683-692.	3.8	25
92	Specific expression of spinal Fos after PAR-2 stimulation in mast cell-depleted rats. NeuroReport, 2002, 13, 511-514.	1.2	24
93	Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology, 2018, 138, 232-244.	4.1	24
94	Impact of a Pharmacist-Implemented Anemia Management in Outpatients with End-Stage Renal Disease in Japan. Biological and Pharmaceutical Bulletin, 2004, 27, 1831-1833.	1.4	23
95	Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide. Biochemical and Biophysical Research Communications, 2011, 414, 727-732.	2.1	23
96	The C-Reactive Protein/Albumin Ratio is Useful for Predicting Short-Term Survival in Cancer and Noncancer Patients. Journal of Palliative Medicine, 2019, 22, 532-537.	1.1	23
97	Roles of urokinase type plasminogen activator in a brain stab wound. Brain Research, 2000, 887, 187-190.	2.2	21
98	Somatosensory cortex stimulation-evoked analgesia in rats: Potentiation by no synthase inhibition. Life Sciences, 2000, 66, PL271-PL276.	4.3	21
99	Effects of somatosensory cortical stimulation on expression of c-Fos in rat medullary dorsal horn in response to formalin-induced noxious stimulation. Journal of Neuroscience Research, 2002, 68, 479-488.	2.9	21
100	Phosphorylation of ERK in the spinal dorsal horn following pancreatic pronociceptive stimuli with proteinaseâ€activated receptorâ€2 agonists and hydrogen sulfide in rats: Evidence for involvement of distinct mechanisms. Journal of Neuroscience Research, 2010, 88, 3198-3205.	2.9	21
101	Inhibition by Hydrogen Sulfide of Rabbit Platelet Aggregation and Calcium Mobilization. Biological and Pharmaceutical Bulletin, 2013, 36, 1278-1282.	1.4	21
102	H2S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals. Handbook of Experimental Pharmacology, 2015, 230, 217-230.	1.8	21
103	Hydrogen Sulfide and T-Type Ca ²⁺ Channels in Pain Processing, Neuronal Differentiation and Neuroendocrine Secretion. Pharmacology, 2017, 99, 196-203.	2.2	21
104	Role of highâ€mobility group box 1 and its modulation by thrombomodulin/thrombin axis in neuropathic and inflammatory pain. British Journal of Pharmacology, 2021, 178, 798-812.	5.4	21
105	Electrocorticogram in rats loaded with SART stress (repeated cold stress) The Japanese Journal of Pharmacology, 1987, 45, 365-372.	1.2	20
106	Attenuation by prolonged nitric oxide synthase inhibition of the enhancement of fibrinolysis caused by environmental stress in the rat. British Journal of Pharmacology, 1996, 119, 346-350.	5.4	20
107	Secondary somatosensory cortex stimulation facilitates the antinociceptive effect of the NO synthase inhibitor through suppression of spinal nociceptive neurons in the rat. Brain Research, 2001, 903, 110-116.	2.2	20
108	Proteinase-Activated Receptor-2–Triggered Prostaglandin E2 Release, but Not Cyclooxygenase-2 Upregulation, Requires Activation of the Phosphatidylinositol 3–Kinase / Akt / Nuclear Factor-κB Pathway in Human Alveolar Epithelial Cells. Journal of Pharmacological Sciences, 2009, 111, 269-275.	2.5	20

Атѕиғимі Каwabata

#	Article	IF	CITATIONS
109	Contribution of TRPA1 as a Downstream Signal of Proteinase-Activated Receptor-2 to Pancreatic Pain. Journal of Pharmacological Sciences, 2013, 123, 284-287.	2.5	20
110	The potent inducible nitric oxide synthase inhibitor ONO-1714 inhibits neuronal NOS and exerts antinociception in rats. Neuroscience Letters, 2004, 365, 111-115.	2.1	19
111	Mechanisms for modulation of mouse gastrointestinal motility by proteinase-activated receptor (PAR)-1 and -2 in vitro. Life Sciences, 2006, 78, 950-957.	4.3	19
112	Mechanisms for prostaglandin E2 formation caused by proteinase-activated receptor-1 activation in rat gastric mucosal epithelial cells. Biochemical Pharmacology, 2007, 73, 103-114.	4.4	19
113	Hydrogen sulfide and neuronal differentiation: Focus on Ca2+ channels. Nitric Oxide - Biology and Chemistry, 2015, 46, 50-54.	2.7	19
114	Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Cav3.2 in mice. Toxicology, 2018, 393, 102-112.	4.2	19
115	Antiallodynic effect of etidronate, a bisphosphonate, in rats with adjuvant-induced arthritis: Involvement of ATP-sensitive K+ channels. Neuropharmacology, 2006, 51, 182-190.	4.1	18
116	The proteinase/proteinase-activated receptor-2/transient receptor potential vanilloid-1 cascade impacts pancreatic pain in mice. Life Sciences, 2010, 87, 643-650.	4.3	18
117	Impairment of passive avoidance performance in SART-stressed mice and the action of drugs The Japanese Journal of Pharmacology, 1989, 49, 111-117.	1.2	17
118	Activation of trigeminal nociceptive neurons by parotid PAR-2 activation in rats. NeuroReport, 2004, 15, 1617-1621.	1.2	17
119	Cav3.2 overexpression in L4 dorsal root ganglion neurons after L5 spinal nerve cutting involves Egr-1, USP5 and HMCB1 in rats: An emerging signaling pathway for neuropathic pain. European Journal of Pharmacology, 2020, 888, 173587.	3.5	17
120	Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. International Journal of Molecular Sciences, 2021, 22, 367.	4.1	17
121	Receptor-activating peptides for PAR-1 and PAR-2 relax rat gastric artery via multiple mechanisms. Life Sciences, 2004, 75, 2689-2702.	4.3	16
122	Proteinase-activated receptors in the gastrointestinal system: a functional linkage to prostanoids. Inflammopharmacology, 2007, 15, 246-251.	3.9	16
123	Signal transduction for formation/release of interleukin-8 caused by a PAR2-activating peptide in human lung epithelial cells. Regulatory Peptides, 2008, 145, 42-48.	1.9	16
124	Polaprezinc attenuates cyclophosphamide-induced cystitis and related bladder pain in mice. Journal of Pharmacological Sciences, 2015, 127, 223-228.	2.5	16
125	The prostaglandin E2/EP4 receptor/cyclic AMP/T-type Ca2+ channel pathway mediates neuritogenesis in sensory neuron-like ND7/23 cells. Journal of Pharmacological Sciences, 2016, 130, 177-180.	2.5	16
126	Changes in platelet count and related parameters in SART-stressed mice and the action of administered neurotropin The Japanese Journal of Pharmacology, 1988, 47, 349-356.	1.2	15

#	Article	IF	CITATIONS
127	Comparison of antinociception induced by supraspinally administered <scp>l</scp> â€arginine and kyotorphin. British Journal of Pharmacology, 1994, 112, 817-822.	5.4	15
128	Evidence that PAR2â€triggered prostaglandin E ₂ (PGE ₂) formation involves the ERKâ€cytosolic phospholipase A ₂ â€COXâ€lâ€microsomal PGE synthaseâ€l cascade in human lung epithelial cells. Cell Biochemistry and Function, 2008, 26, 279-282.	2.9	15
129	Topical application of disodium isostearyl 2â€O‣â€ascorbyl phosphate, an amphiphilic ascorbic acid derivative, reduces neuropathic hyperalgesia in rats. British Journal of Pharmacology, 2012, 166, 1058-1068.	5.4	15
130	Lipopolysaccharide-induced subsensitivity of protease-activated receptor-2 in the mouse salivary glands in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 281-284.	3.0	14
131	Human soluble thrombomodulin-induced blockade of peripheral HMGB1-dependent allodynia in mice requires both the lectin-like and EGF-like domains. Biochemical and Biophysical Research Communications, 2018, 495, 634-638.	2.1	14
132	Genetic deletion of Cav3.2ÂT-type calcium channels abolishes H2S-dependent somatic and visceral pain signaling in C57BL/6 mice. Journal of Pharmacological Sciences, 2019, 140, 310-312.	2.5	14
133	Estrogen decline is a risk factor for paclitaxel-induced peripheral neuropathy: Clinical evidence supported by a preclinical study. Journal of Pharmacological Sciences, 2021, 146, 49-57.	2.5	14
134	The noradrenaline precursor <scp>l</scp> â€ <i>threo</i> â€3,4â€dihydroxyphenylserine exhibits antinociceptive activity via central αâ€adrenoceptors in the mouse. British Journal of Pharmacology, 1994, 111, 503-508.	5.4	13
135	Lipopolysaccharide-induced platinum accumulation in the cerebral cortex after cisplatin administration in mice: Involvement of free radicals. Environmental Toxicology and Pharmacology, 1996, 2, 321-326.	4.0	13
136	Determination of Mucin in Salivary Glands Using Sialic Acids as the Marker by High-Performance Liquid Chromatography with Fluorometric Detection. Analytical Biochemistry, 2000, 283, 119-121.	2.4	13
137	The PAR-1-activating peptide facilitates pepsinogen secretion in rats. Peptides, 2003, 24, 1449-1451.	2.4	13
138	Repeated Cold Stress Enhances the Acute Restraint Stress-Induced Hyperthermia in Mice. Biological and Pharmaceutical Bulletin, 2017, 40, 11-16.	1.4	13
139	Design and synthesis of novel anti-hyperalgesic agents based on 6-prenylnaringenin as the T-type calcium channel blockers. Bioorganic and Medicinal Chemistry, 2018, 26, 4410-4427.	3.0	13
140	Central antinociceptive effect of l-ornithine, a metabolite of l-arginine, in rats and mice. European Journal of Pharmacology, 1996, 296, 23-31.	3.5	12
141	Blood Coagulation and Fibrinolysis in SART-Stressed (Repeated Cold-Stressed) Rats and Drug Effects on the Altered Hemostatic Parameters The Japanese Journal of Pharmacology, 1991, 56, 403-412.	1.2	11
142	Antihyperalgesic Effect of Buprenorphine Involves Nociceptin/Orphanin FQ Peptide–Receptor Activation in Rats With Spinal Nerve Injury–Induced Neuropathy. Journal of Pharmacological Sciences, 2013, 122, 51-54.	2.5	11
143	Mechanisms for proteinase-activated receptor 1-triggered prostaglandin E ₂ generation in mouse osteoblastic MC3T3-E1 cells. Biological Chemistry, 2015, 396, 153-162.	2.5	10
144	Involvement of the cystathionine-Î ³ -lyase/Cav3.2 pathway in substance P-induced bladder pain in the mouse, a model for nonulcerative bladder pain syndrome. Neuropharmacology, 2018, 133, 254-263.	4.1	10

#	Article	IF	CITATIONS
145	Role of Thrombin in Soluble Thrombomodulin-Induced Suppression of Peripheral HMGB1-Mediated Allodynia in Mice. Journal of NeuroImmune Pharmacology, 2018, 13, 179-188.	4.1	10
146	Involvement of <scp>NF</scp> â€₽B in the upregulation of cystathionineâ€Î³â€lyase, a hydrogen sulfideâ€forming enzyme, and bladder pain accompanying cystitis in mice. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 355-361.	9 1.9	10
147	Characterization of platelet hypofunctions in rats under SART stress (repeated cold stress). Thrombosis Research, 1993, 69, 197-207.	1.7	9
148	Fluorometric Determination of Mucin-Type Glycoproteins by the Galactose Oxidase-Peroxidase Method. Analytical Biochemistry, 2000, 284, 87-92.	2.4	9
149	Changes in CNS Levels of Serotonin and Its Metabolite in SART-Stressed (Repeatedly Cold-Stressed) Rats. The Japanese Journal of Pharmacology, 1991, 56, 101-104.	1.2	8
150	Possible involvement of oxygen-derived free radicals in abnormal hemostasis induced by SART stress (repeated cold stress) in laboratory animals. Thrombosis Research, 1993, 72, 321-331.	1.7	8
151	Kyotorphin synthetase activity in rat adrenal glands and spinal cord. Peptides, 1996, 17, 407-411.	2.4	8
152	Gastrointestinal functions of proteinase-activated receptors. Life Sciences, 2003, 74, 247-247.	4.3	8
153	High glucose induces N-linked glycosylation-mediated functional upregulation and overexpression of Cav3.2 T-type calcium channels in neuroendocrine-like differentiated human prostate cancer cells. Journal of Pharmacological Sciences, 2017, 133, 57-60.	2.5	8
154	Protease-Activated Receptors (PARs) as Therapeutic Targets: Development of Agonists / Antagonists and Modulation of Gastrointestinal Functions. Drug Design Reviews Online, 2004, 1, 287-296.	0.7	8
155	Risk factors and pharmacotherapy for chemotherapy-induced peripheral neuropathy in paclitaxel-treated female cancer survivors: A retrospective study in Japan. PLoS ONE, 2021, 16, e0261473.	2.5	8
156	L-Tyrosine-induced antinociception in the mouse: involvement of central δ-opioid receptors and bulbo-spinal noradrenergic system. European Journal of Pharmacology, 1993, 233, 255-260.	3.5	7
157	Ex Vivo Evidence That the Phosphodiesterase Inhibitor IBMX Attenuates the Up-Regulation of PAR-2 in the Endotoxemic Rat Aorta. Thrombosis Research, 2001, 101, 513-515.	1.7	7
158	Caspase-Dependent HMGB1 Release from Macrophages Participates in Peripheral Neuropathy Caused by Bortezomib, a Proteasome-Inhibiting Chemotherapeutic Agent, in Mice. Cells, 2021, 10, 2550.	4.1	7
159	Modulation of gastric function by proteinase-activated receptors. Drug Development Research, 2003, 60, 9-13.	2.9	6
160	HMGB1 and its membrane receptors as therapeutic targets in an intravesical substance P-induced bladder pain syndrome mouse model. Journal of Pharmacological Sciences, 2020, 143, 112-116.	2.5	6
161	Effects of Bepridil and Pimozide, Existing Medicines Capable of Blocking T-Type Ca ²⁺ Channels, on Visceral Pain in Mice. Biological and Pharmaceutical Bulletin, 2021, 44, 461-464.	1.4	6
162	Effects of Neurotropin and other drugs on changes in brain and plasma catecholamine content in SART-stressed rats. The Japanese Journal of Pharmacology, 1987, 43, 153.	1.2	5

#	Article	IF	CITATIONS
163	NG-Nitro-l-arginine methyl ester and α-methyl-l-ornithine inhibit kyotorphin synthetase from rat brain. Peptides, 1995, 16, 1317-1319.	2.4	5
164	Multiple roles for protease-activated receptor-2 in gastric mucosa. Inflammopharmacology, 2002, 10, 343-349.	3.9	5
165	Delayed production of arachidonic acid contributes to the delay of proteinaseâ€activated receptorâ€1 (PAR1)â€triggered prostaglandin E ₂ release in rat gastric epithelial RGM1 cells. Journal of Cellular Biochemistry, 2011, 112, 909-915.	2.6	5
166	Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice. Pharmacology, 2017, 99, 281-285.	2.2	5
167	Prostanoid-dependent bladder pain caused by proteinase-activated receptor-2 activation in mice: Involvement of TRPV1 and T-type Ca 2+ channels. Journal of Pharmacological Sciences, 2018, 136, 46-49.	2.5	5
168	NNC 55-0396, a T-type calcium channel blocker, protects against the brain injury induced by middle cerebral artery occlusion and reperfusion in mice. Journal of Pharmacological Sciences, 2019, 140, 193-196.	2.5	5
169	Role of neuron-derived ATP in paclitaxel-induced HMGB1 release from macrophages and peripheral neuropathy. Journal of Pharmacological Sciences, 2022, 148, 156-161.	2.5	5
170	A characteristic pattern of active avoidance behavior in SART-stressed rats The Japanese Journal of Pharmacology, 1989, 49, 436-440.	1.2	4
171	Cross tolerance to environmental stress and endotoxin. Life Sciences, 1998, 62, PL327-PL333.	4.3	4
172	Essential role of Cav3.2 T-type calcium channels in butyrate-induced colonic pain and nociceptor hypersensitivity in mice. European Journal of Pharmacology, 2020, 887, 173576.	3.5	4
173	Subsensitivity to substance P in SART-stressed mice The Japanese Journal of Pharmacology, 1989, 49, 293-296.	1.2	3
174	Lipid Mediators and Pain Signaling Foreword. Biological and Pharmaceutical Bulletin, 2011, 34, 1153.	1.4	3
175	Enhanced Hyperthermic Responses to Lipopolysaccharide in Mice Exposed to Repeated Cold Stress. Pharmacology, 2017, 99, 172-178.	2.2	3
176	Dietary ascorbic acid restriction in GNL/SMP30-knockout mice unveils the role of ascorbic acid in regulation of somatic and visceral pain sensitivity. Biochemical and Biophysical Research Communications, 2019, 511, 705-710.	2.1	3
177	Electrocorticogram in Rats Loaded with SART Stress (Repeated Cold Stress). The Japanese Journal of Pharmacology, 1987, 45, 365-372.	1.2	2
178	A Characteristic Pattern of Active Avoidance Behavior in SART-Stressed Rats. The Japanese Journal of Pharmacology, 1989, 49, 436-440.	1.2	2
179	Impairment of Passive Avoidance Performance in SART-Stressed Mice and the Action of Drugs. The Japanese Journal of Pharmacology, 1989, 49, 111-117.	1.2	2
180	Activation of protease-activated receptor-2 triggers salivation. The Japanese Journal of Pharmacology, 1999, 79, 92.	1.2	2

#	ARTICLE	IF	CITATIONS
181	Basic and Translational Research on Proteinase-Activated Receptors: Preface. Journal of Pharmacological Sciences, 2008, 108, 406-407.	2.5	2
182	Repeated Cold Stress Reduces Cyclophosphamide-Induced Cystitis/Bladder Pain and Macrophage Activity in Mice. Pharmacology, 2017, 99, 286-290.	2.2	2
183	Prenylflavanones as Novel T-Type Calcium Channel Blockers Useful for Pain Therapy. Natural Product Communications, 2019, 14, 1934578X1987344.	0.5	2
184	Development of hepatic impairment aggravates chemotherapy-induced peripheral neuropathy following oxaliplatin treatment: Evidence from clinical and preclinical studies. Journal of Pharmacological Sciences, 2022, 148, 315-325.	2.5	2
185	Effect of ginseng-20S-prosapogenin on tissue blood flow measured by the hydrogen clearance method in sympathicotonic- or parasympathicotonic-type stressed mice Journal of Pharmacobio-dynamics, 1985, 8, 1068-1072.	0.5	1
186	Studies on pain modulation by neuroactive amino acids VHI: Antinociceptive mechanisms of L-ornithine, a metabolite of L-arginine The Japanese Journal of Pharmacology, 1994, 64, 180.	1.2	1
187	1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one reverses the inhibition by sodium nitroprusside of thrombin-induced platelet aggregation in the rat. Thrombosis Research, 1996, 82, 543-545.	1.7	1
188	Opposite effects of two thiazolidinediones, ciglitazone and troglitazone, on proteinase-activated receptor-1-triggered prostaglandin E2 release. Toxicology, 2010, 268, 40-45.	4.2	1
189	Ouabain exerts cytoprotection by diminishing the intracellular K+ concentration increase caused by distinct stimuli in human leukemic cells. Journal of Pharmacy and Pharmacology, 2014, 67, 126-132.	2.4	1
190	Selective sensitization of C-fiber nociceptors by hydrogen sulfide. Journal of Pharmacological Sciences, 2016, 130, 38-41.	2.5	1
191	Tacrolimus, a calcineurin inhibitor, promotes capsaicin-induced colonic pain in mice. Journal of Pharmacological Sciences, 2020, 143, 60-63.	2.5	1
192	Circadian pharmacokinetics and limited sampling strategy of everolimus in heart transplant patients. International Journal of Clinical Pharmacology and Therapeutics, 2017, 55, 1-8.	0.6	1
193	Identification of Remaining Life Expectancy Less Than Two Weeks by C-Reactive Protein/Albumin Ratio, Prognostic Nutritional Index, Fibrosis-4 Index, and Albumin-Bilirubin Score in Terminal Cancer Patients. Journal of Palliative Medicine, 2021, , .	1.1	1
194	Protease-activated receptor- 2 (PAR-2) : 神経系,æ¶^北å™ç³»ãŠã,^ã³è¡€ç®¡ç³»ã«ãŠã'ã,‹å½¹å‰². Japanes« 467-476.	e Journal of 0.1	f Thrombosis
195	Evaluation of Transdermal Penetration in Fentanyl Tape Using Franz Diffusion Cells: Changes in Drug Release and Skin Permeation under the Hyperthermia. Iryo Yakugaku (Japanese Journal of) Tj ETQq1 1 0.784314	rg ®T 1/Over	lotk 10 Tf 50
196	Changes in Percutaneous Absorption of Fentanyl Patches in Rats Treated with a Sebum-Like Secretion. Chemical and Pharmaceutical Bulletin, 2020, 68, 879-884.	1.3	1
197	Changes in Platelet Count and Related Parameters in SART-Stressed Mice and the Action of Administered Neurotropin. The Japanese Journal of Pharmacology, 1988, 47, 349-356.	1.2	0
198	Blood Coagulation and Fibrinolysis in SART-Stressed (Repeated Cold-Stressed) Rats and Drug Effects on the Altered Hemostatic Parameters. The Japanese Journal of Pharmacology, 1991, 56, 403-412.	1.2	0

Атѕиғимі Каwabata

#	Article	IF	CITATIONS
199	Pain Information Pathways from the Periphery to the Cerebral Cortex. ChemInform, 2003, 34, no.	0.0	0
200	Roles for H2S in pain processing: Response to Cunha and Verri. Pain, 2007, 130, 302-303.	4.2	0
201	Roles of the Hydrogen Sulfide/T-Type Calcium Channel System in Somatic and Visceral Pain Processing. Frontiers of Gastrointestinal Research, 2012, , 212-218.	0.1	Ο
202	Development of diabetes mellitus following hormone therapy in prostate cancer patients is associated with early progression to castration resistance. Scientific Reports, 2021, 11, 17157.	3.3	0
203	Itch and pain caused by intradermal injection of sulfides in mouse cheek: Effect of genetic deletion of Ca _v 3.2 T-type calcium channels. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 3-P1-08.	0.0	Ο
204	Middle molecular weight heparinylphenylalanine is an analgesic with reduced risk of hemorrhage. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-2-14.	0.0	0
205	High mobility group box 1 suppresses smooth muscle tension in rat aorta via Toll-like receptor 4-dependent upregulation of iNOS. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-2-28.	0.0	Ο
206	Regulation of Ca _v 3.2-mediated pain signals by hydrogen sulfide. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-S17-3.	0.0	0
207	Role of macrophage–derived HMGB1 as an algogenic molecule â , therapeutic target in visceral pain. Pain Research, 2019, 34, 24-30.	0.1	Ο
208	A Combination of Cryopreservation and Kneading Maintains the Usability of Mohs Paste. Chemical and Pharmaceutical Bulletin, 2020, 68, 516-519.	1.3	0
209	Middle molecular weight heparinylphenylalanine, an RAGE blocker, prevents oxaliplatin-induced peripheral neuropathy and butyrate-induced colonic pain in mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 1-P-022.	0.0	0